Отчет о структурированных данных. Полное руководство по работе со структурированными данными

Тема 4.7

Программирование алгоритмов
формирования и обработки
одномерных массивов

Структурированные данные

Часто приходится обрабатывать не одиночные данные, а совокупность данных одного типа. Например, задача табулирования функции , которая состоит в получении последовательности значений заданной функции при нескольких значениях аргумента. Для промежуточного хранения каждого значения полученных данных требуется объявить собственную переменную с уникальным именем.

Обращение к каждой переменной последовательности по имени превращается в длинную вереницу однотипных операций с каждой переменной. Программный код становится плохо обозримым. Для размещения такой программе требуется много памяти.

Для устранения указанных проблем в алгоритмических языках используются структурированные данные. Самыми простыми структурированными данными являются массивы данных .

Массив – это совокупность однотипных переменных (элементов массива ). Имя у всех переменных одно и то же, а для доступа к конкретному элементу массива используется дополнительный идентификатор – его порядковый номер (индекс), который начинается с 0.

Кроме массивов в программировании для построения эффективных алгоритмов могут использоваться и другие стандартные структуры данных, такие структуры данных, как стеки, очереди, связанные списки и другие.

Наряду со стандартными структурами данных, могут использоваться структуры данных, определяемые пользователем. Эти структуры данных определяются средствами объектно-ориентированного программирования с помощью классов .

4.7.2. Средства описания и работы с одномерными
массивами данных

Массив – последовательность переменных одинакового типа, объединенных общим именем . Например: одномерный массив а(9) состоит из 10 элементов с общим именем а: a(0), a(1), a(2), a(3),..., a(9), упорядоченных по индексу i, который принимает значения от 0 до 9:

a(i)
i

Массив в программе VBобъявляется точно так же, как объявляются простые переменные. Если массив объявлен локальным , его можно использовать только в той процедуре, в которой он объявлен. Если массив объявлен как глобальный , он может быть использован в любом месте программы.

При объявлении массива оператор объявления должен включать следующую информацию:

· имя массива – имя (идентификатор), которое используется для представления массива в программе;

· тип данных – тип данных, который имеют элементы массива;


· размерность (ранг) – количество измерений объявляемого массива (т.е. количество индексов при объявлении; одномерные массивы имеют одно измерение);

· количество элементов – количество элементов, которые будут содержаться в массиве.

Рассмотрим примеры некоторых описаний массивов:

В этих примерах объявлены следующие массивы:

· одномерный массив d , состоящий из 31 элемента типа Integer с индексами от 0 до 30;

· одномерный массив a, состоящий из 11 элементов типа Double с индексами от 0 до 10;

· двумерный массив b , состоящий из 14х11=151 элемента типа Single с индексами по строкам от 0 до 13 и по столбцам от 0 до 10.

Обратите внимание, что значением нижней границы массива в VB может быть только 0 .

Таким образом, массив состоит из элементов, которые могут быть доступны при помощи индексов . При обращении к элементам массива индексы записываются вслед за именем в круглых скобках и могут представлять собой любое допустимое целочислен­ное выражение. Например, d(24), a(2*i+1).

Обратите внимание, что количество индексов указывает на размерность массива. Так, в приведенном выше примере размерность массива a(10) равна единице. Массив b(2,3) имеет размерность 2.

В отличие от размерности , размер массива – это количество элементов в массиве. В нашем примере размер массива, а(10) равен 11.

Перед использованием массива в программе его необходимо объявить с помощью оператора Dim , а элементам массива присвоить конкретные значения. Оператор Dim выделяет место в памяти компьютера для размещения элементов массива, обнуляет элементы числовых массивов или заполняет элементы строковых массивов пустыми строками ("""").

Как и для простых типов, данных, при объявлении массивов, которые являются структурированными типами данных, различают два способа распределения памяти: статическое – на этапе компиляции до выполнения программы, и динамическое – в ходе выполнения программы. По умолчанию массив, границы которого заданы константными выражениями, считается статическим. Память для размещения такого массива выделяется на этапе компиляции и сохраняется за ним на весь период выполнения.

Заполнить элементы массива конкретными значениями можно с помощью ввода значений элементов массива, с помощью оператора присваивания или с помощью инициализации элементов массива.

Инициализация элементов массива – это поэлементное присваивание значения в операторе объявления массива. В этом случае размер массива не указывается в круглых скобках после имени массива, а определяется неявно размером списка значений. Список значений начинается с элемента с индексом 0 и заключается в фигурные скобки , например:

Следует отметить, что независимо от конкретной задачи, алгоритмы формирования и обработки массивов обычно строятся с использованием регулярных циклических структур:

Чтобы облегчить работу с массивами в процедурах, для определения верхней границы массива используется встроенная функция
Bound (ИмяМассива ).

Эта функция возвращает (определяет) номер последнего элемента массива и позволяет обрабатывать массивы в процедурах, не передавая в них в качестве параметра количество элементов массива. Например,

Кроме того, для определения верхней границы одномерного массива можно использовать методGetUpperBound(). Поскольку массив одномерный, то в скобках следует указывать значение 0. Например:

Кроме того, известно, что ключевое слово ByVal указывает передачу аргумента-массива по значению, а ключевое слово ByRef указывает, что аргумент-массив передается по ссылке. Заметим, что если ключевые слова ByVal или ByRef опущены, то аргумент-массив переда­ется по ссылке.

Таким образом, при описании формальных параметров любой процедуры после ИмяМассива не­обходимо всегда включать пустые круглые скобки, так как они указывают, что этот параметр являет­ся одномерным массивом.

Обратите внимание на то, что после имени массива, который является фактическим параметром, скобки отсутствуют .

Как известно, передача аргументов по значению (с помощью ключевого слова ByVal) приводит к тому, что VB передает копию данных процедуре. Поэтому не следует передавать массивы по значению, если в этом нет особой необходимости.

Cтраница 1


Структурированные данные в языке Ада могут использоваться в виде массивов и записей. Кроме того, доступ к структурированным данным в языке Ада может осуществляться с помощью указателей. Использование массивов с неуточненными границами обеспечивает возможность параметризации массивов и использования подпрограмм, в качестве параметров которых используются массивы переменного размера.  

Семантика переменных в языке PILOT / 2.  

Обработка сложно структурированных данных во внешней памяти является отличительным свойством всех ЯПЗ. Но помимо этого нужны и обычные переменные. Вот почему в ЯПЗ PILOT / 2 введены регистры и стеки.  

Множества процедур, представляющие структурированные данные, обладают интересным и иногда полезным свойством: из них можно образовывать другие возможные представления. Так, например, из представления списка 2 логически следует представление списка 1, и первое из них можно было бы снабдить такими инструкциями, используя соответствующие управляющие директивы, которые позволили бы получить на выходе второе представление. В этом контексте представление списка 2 вело бы себя подобно обычному множеству процедур, порождающему выходные данные. Такая способность логических утверждений одновременно выполнять функции как обычных процедур, так и представлений структур данных показывает, что всякое предполагаемое различие между процедурами и данными носит в сущности прагматический характер, и касается оно лишь использования этих ресурсов, а не присущих им атрибутов.  

Компоненты массива представляют собой структурированные данные одного типа. Массив объединяет данные с одинаковыми свойствами. В противоположность массивам компоненты прямого (декартова) произведения могут иметь различные типы. Прямое (декартово) произведение, как и массив, является одним из основных структурированных типов данных, и его называют также записью или структурой.  

Знания - это хорошо структурированные данные, или данные о данных, или метаданные.  

В представлении посредством термов структурированные данные образуются при помощи функциональных символов, позволяющих собирать составляющие их части в группы. Так, например, список (10 20 30) можно было бы представить термом 10.20.30. NIL, в котором каждый функтор точка группирует элемент, расположенный слева от него, со стоящим справа хвостовым фрагментом списка. И константы, и структурированные термы можно рассматривать как по существу пассивные объекты, предназначенные для обработки процедурами.  

На класс программ обработки структурированных данных ориентирована АЛТОП-технология, созданная на основе работ по программному обеспечению АСУ. Эта разработка включает оригинальные средства составления исходных описаний , разбираемые в разделах 2.4 и 2.5, и методику проектирования (см. гл.  

Таким образом, класс структурированных данных представляет данные / для хранения которых необходимо создание фиксированных совокупностей форматов. Базы данных, хранящие такие данные, являются форматированными с детерминированной схемой, ориентируемой на предварительную фиксацию и классификацию объектов внешней среды, точного утверждения свойств и отношений, описываемых в базе данных из заранее созданной совокупности фиксированных форматов.  

Под базой данных понимается совокупность структурированных данных.  

Для размещения в линейных структурах памяти структурированных данных используются различные приемы и методы. Как правило, такие данные представляются в виде списков и от их организации прямо зависит эффективность поиска и другие характеристики систем обработки данных.  

Имена в программах используются для обозначения простых переменных, структурированных данных, элементов структурированных данных, констант, подпрограмм, операций, меток операторов, формальных параметров и других элементов программы. Имена бывают несоставные и составные.  

В основу ЯЗ положены неоператорные средства описания иерархически структурированных данных. Оно однозначно определяет траекторию движения и доступа в БД. Кроме того, в ЯЗ имеются средства, аналогичные процедурным языкам программирования.  

Формализованная анкета, предназначенная для обработки и записи структурированных данных.  

В указанной терминологии база данных может быть определена как совокупность специальным образом структурированных данных и связей между их элементами, сегментами и логическими записями. Построение баз данных в таком понимании возможно лишь для информационных объектов, обладающих общими для целого класса свойствами. При необходимости предоставления в информационной базе объектов с индивидуальными свойствами целесообразно строить базы неструктурированных данных, допускающие фиксирование информации на естественном языке.  

Практически все web-мастера считают, что добавив свой сайт в индексацию в поисковик через соответствующие сервисы, они обеспечивают его полное продвижения в данной поисковой машине. Но не тут то было.

Google предлагает создавать структурированные данные. Данный сервис значительно улучшает выдачу по запросу, а также увеличивает вероятность у посетителя найти нужный материал. Это в свою очередь улучшает востребованность вашего ресурса, и выдаёт ваш адрес именно тем пользователям, которые действительно в этом нуждаются.

Принцип работы структурированных данных

Для того, чтобы понять, как это работает, и какую выгоду принесёт вам, как обычно обратимся к живому примеру.

Представьте, что прохожий по имени Пользователь – это человек, который ищет шоколадные вафли. В примере существует ещё прохожий-иностранец по имени Google и кондитерские магазины под названием Сайт и Сайт2.

Прохожий спрашивает у Googlе – где я могу купить шоколадные вафли. И тот ему указывает дорогу в магазин Сайт1. Но в магазине Сайт1 есть только вафли ванильные, а шоколадные продаются в Сайт2. Google, заведомо узнал об ассортименте магазинов, но в виду того, что он иностранец, не всё правильно понял.

Прохожий может, конечно, купить ванильные вафли, ведь это тоже вафли. Но он не останется таким же довольным, как был бы, если бы купил шоколадные. Поэтому он оставит плохой отзыв о магазине Сайт1, и вряд ли придёт сюда ещё, а о Сайт2 вообще, наверное, никогда не узнает.

Итак, из примера ясно, что поисковая машина Google является непонимающим иностранцем, когда собирает информацию о вашем сайте. И не все те данные, которые человеку кажутся явными, Google оценит правильно. Поэтому иногда возможны погрешности.

Структурированные данные являются разметкой на страницах сайта, которые становятся более понятными для Google, и поисковик будет выдавать ваш сайт более правильно. Этот инструмент бесплатен. Разве можно упустить возможность воспользоваться им?

Как начать работать с структурированными данными Google

Что-бы начать работу со структурированными данными следует отправиться в соответствующий сервис Google, и там загрузить страницу сайта в мастер. В данном мастере можно назначить пояснительные метки, которые будут понятны Google.
Это всё равно, что сделать вывеску на магазине Сайт2 на родном языке иностранца Google, о том, что там продаются шоколадные вафли. Тогда он точно не ошибётся.

После назначения всех меток, вы получите код html, который можно скачать и сохранить на своём сайте.
Всё до элементарного просто, и отдача будет хорошая.

Если страницы на вашем сайте размечены специальным образом, в Google Поиске могут отображаться их расширенные описания и другая полезная информация. Например, расширенное описание для сайта ресторана может содержать сводный отзыв и информацию о ценах. Данные на странице структурируются с помощью глоссария schema.org или в таких форматах, как микроданные, RDF, микроформаты и т. д. Кроме того, в Search Console для этой цели предусмотрен инструмент Маркер .

В Search Console на странице "Структурированные данные" можно просмотреть соответствующую информацию о вашем сайте, собранную роботом Googlebot. Также здесь будут сведения обо всех ошибках в разметке, которые мешают показу расширенных описаний или другой полезной информации в результатах поиска.

На странице Структурированные данные перечислены все типы структурированных данных на вашем сайте, а также информация о наличии в них ошибок.

Указываются только объекты верхнего уровня, обнаруженные на страницах. Например, если ваша страница содержит объект schema.org/Event , в который вложены данные schema.org/Place , учитываться будет только свойство Event .

Если в списке отсутствуют структурированные данные, которые вы добавили на страницу с помощью микроформатов, микроданных или RDFa, воспользуйтесь этим инструментом . Он позволяет проверить, может ли Google получить доступ к информации на странице и распознать разметку.

Диагностика и устранение ошибок в разметке

1. Выясните, в каких типах структурированных данных есть ошибки

Статистика по каждому из типов данных приведена в таблице под графиком. Для наглядности все типы отсортированы по количеству ошибок. Обратите внимание, что слово "элемент" в этой таблице означает один HTML-тег в исходном коде страницы. Поэтому если на сайте, к примеру, есть тип данных "Фильмы" с ошибками в 3000 элементов и тип "Места" с ошибками в 42 элементах, то начните работу по устранению ошибок с фильмов.

2. Определите тип ошибок

Нажмите на тип структурированных данных в таблице, чтобы увидеть подробный список всех проблемных элементов, которые к нему относятся. Появится список длиной до 10 000 URL, в котором для каждой страницы будет указано количество ошибок и их тип. Нажмите на URL, чтобы увидеть обнаруженные фрагменты разметки, например типы элементов и свойства.

Существует два типа ошибок в структурированных данных:

  • Отсутствующие поля
    Например, в расширенном описании веб-страницы мероприятия указаны место и исполнитель, но не указана дата проведения.
  • Отсутствует минимальная или максимальная оценка
    Например, товар оценен по пятибалльной шкале, но свойства bestRating (5) или worstRating (1) не размечены.

3. Исправьте разметку на сайте

Начните расследование с примеров, указанных в разделе "Структурированные данные". Меры по исправлению целиком зависят от того, как вы внедряли разметку на сайте. Например, если вы делали это с помощью системы управления контентом (CMS), скорее всего, придется откорректировать ее настройки.

Экзамен Информатика

Информация как ресурс. Способы хранения и обработки информации.

Информация от лат. «Information» означает разъяснение, осведомление, изложение.

В широком смысле информация – это общенаучное понятие, включающее в себя обмен сведениями между людьми, обмен сигналами между живой и неживой природой, людьми и устройствами.
Информация – это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, кот-е уменьшают имеющуюся о них степень неопределенности, неполноты знаний.

Информатика рассматривает информацию как концептуально связанные между собой сведения, данные, понятия, изменяющие наши представления о явлении или объекте окружающего мира.

Информационные ресурсы это отдельные документы и отдельные массивы документов, документы и массивы документов в информационных системах (библиотеках, архивах, фондах, банках).
Чтобы информация могла использоваться, причем многократно, необходимо ее хранить.

Хранение информации – это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга - библиотека, картина - музей, фотография - альбом). ЭВМ предназначена для компактного хранения информации с возможностью быстрого доступа к ней.
Обработка информации – это преобразование информации из одного вида в другой.
Обработка информации – сам процесс перехода от исходных данных к результату и есть процесс обработки. Объект или субъект, осуществляющий обработку - исполнитель обработки.
1-ый тип обработки: обработка, связанная с получением новой информации, нового содержания знаний.
2-ой тип обработки: обработка, связанная с изменением формы, но не изменяющая содержания (например,
перевод текста с одного языка на другой).

Важный вид обработки - кодирование – преобразование информации в символьную форму,
удобную для ее хранения, передачи, обработки. Другой вид обработки информации – структурирование данных (внесение определенного порядка в хранилище информации, классификация, каталогизация данных).
Ещё один вид обработки информации – поиск в некотором хранилище информации нужных данных, удовлетворяющих определенным условиям поиска (запросу).



Понятие структурированных данных. Определение и назначение базы данных.

Создавая базу данных, пользователь стремится упорядочить информацию по различным признакам и быстро извлекать выборку с произвольным сочетанием признаком. Сделать это возможно, только если данные структурированы.

Структурирование - это введение соглашений о способах представления данных.

Структурированные данные - это упорядоченные данные.

Неструктурированные данные – это данные, записанные, например, в текстовом файле: Личное дело № 1 Сидоров Олег Иванович, дата рожд. 14.11.92, Личное дело № 2 Петрова Анна Викторовна, дата рожд. 15.03.91.

Чтобы автоматизировать поиск и систематизировать эти данные, необходимо выработать определенные соглашения о способах предоставления данных, т.е. дату рожд. нужно записывать одинаково для каждого студента, она должна иметь одинаковую длину и опред. место среди остальной информации. Эти же замечания справедливы и для остальных данных (№ личного дела, Ф., И., О.) После проведения несложной структуризации с информацией, она будет выглядеть так:

Пример структурированных данных: № Ф. И. О. Дата рожд.

1 Сидоров Олег Иванович 14.11.92

Элементы структурированных данных:

1) А – поле (столбец) – это элементарная неделимая единица организации информации

2) Б – запись (строка) – это совокупность логически связанных полей

3) В – таблица (файл) – это совокупность экземпляров записей одной структуры.

База данных – это организованная на машинном носителе совокупность взаимосвязанных структурированных данных, содержащая сведения о различных сущностях некоторой предметной области (объектах, процессах, событиях, явлениях).

В широком смысле слова база данных – это совокупность сведений о конкретных объектах реального мира в какой-либо предметной области.

Под предметной областью понимается часть реального мира, подлежащая изучению для организации управления, автоматизации, например, предприятии, ВУЗ и т.д.

Назначение базы данных:

1)Контроль за избыточностью данных. Как уже говорилось, традиционные файловые системы неэкономно рас­ходуют внешнюю память, сохраняя одни и те же данные в нескольких файлах. При использовании базы данных, наоборот, предпринимается попытка исключить избыточность данных за счет интеграции файлов, чтобы избежать хранения нескольких копий одного и того же эле­мента информации.

2)Непротиворечивость данных. Устранение избыточности данных или контроль над ней позволяет сократить риск возникновения противоречивых состояний. Если элемент данных хранится в базе только в одном экземпляре, то для изменения его значения потребуется выполнить только одну операцию обновления, причем новое значение станет доступным сразу всем пользователям базы данных. А если этот элемент данных с ведома системы хранится в базе данных в нескольких экземплярах, то такая система сможет следить за тем, чтобы копии не противоречили друг другу.

3)Совместное использование данных. Файлы обычно принадлежат отдельным лицам или целым отделам, которые используют их в своей работе. В то же время база данных принадлежит всей организации в целом и может совместно использоваться всеми зарегистрированными пользователями. При такой организации работы большее количество пользователей может работать с большим объемом данных. Более того, при этом можно создавать новые приложения на основе уже существующей в базе данных информации и добавлять в нее только те данные, которые в настоящий момент еще не хранятся в ней, а не определять заново требования ко всем данным, необходимым новому приложению.

4)Поддержка целостности данных. Целостность базы данных означает корректность и непротиворечивость хранимых в ней данных. Целостность обычно описывается с помощью ограничений, т.е. правил под­держки непротиворечивости, которые не должны нарушаться в базе данных. Ограничения можно применять к элементам данных внутри одной записи или к связям между записями. Например, ограничение целостности может гласить, что зарплата сотрудника не должна превышать 40 000 рублей в год или же что в записи с данными о сотруднике номер отделения, в котором он работает, должен соответствовать реально существующему отделению компании.

5)Повышенная безопасность. Безопасность базы данных заключается в защите базы данных от несанкционированного доступа со стороны пользователей. Без привлечения соответствующих мер безопасности интегрированные данные становятся более уязвимыми, чем данные в файловой системе. Однако интеграция позволяет определить требуемую систему безопасности базы данных, а СУБД привести ее в действие. Система обеспечения безопасности может быть выражена в форме учетных имен и паролей для идентификации пользователей, которые зарегистрированы в этой базе данных. Доступ к данным со стороны зарегистрированного пользователя может быть ограничен только некоторыми операциями (извлечением, вставкой, обновлением и удалением).