Узел пельтье. Для чего нужны элементы Пельтье? Элементы Пельтье: принцип работы, характеристики, применение

Начало 19 столетия. Золотой век физики и электротехники. В 1834 году французский часовщик и естествоиспытатель Жан-Шарль Пельтье поместил каплю воды между электродами из висмута и сурьмы, а затем пропустил по цепи электрический ток. К своему изумлению, он увидел, что капля неожиданно замерзла.

О тепловом действии электрического тока на проводники было известно, а вот обратный эффект был сродни магии. Можно понять чувства Пельтье: это явление на стыке двух разных областей физики - термодинамики и электричества вызывает ощущение чуда и сегодня.

Проблема охлаждения тогда не была такой острой, как сегодня. Поэтому к эффекту Пельтье обратились только спустя почти два столетия, когда появились электронные устройства, для работы которых потребовались миниатюрные системы охлаждения. Достоинством охлаждающих элементов Пельтье являются малые габариты, отсутствие движущихся деталей, возможность каскадного соединения для получения больших перепадов температур.

Кроме этого, эффект Пельтье обратим: при перемене полярности тока через модуль, охлаждение сменяется нагреванием, поэтому на нем легко реализуются системы точного поддержания температуры - термостаты . Недостатком элементов (модулей) Пельтье является низкий КПД, что требует подведения больших значений тока для получения заметного перепада температур. Сложность представляет и отвод тепла от пластины, противоположной охлаждаемой плоскости.

Но обо всем по-порядку. Для начала попытаемся рассмотреть физические процессы, ответственные за наблюдаемое явление. Не погружаясь в пучину математических выкладок, постараемся просто на «пальцах» понять природу этого интересного физического явления.

Поскольку речь идет о температурных явлениях, физики, для удобства математического описания, заменяют колебания атомной решетки материала неким газом, состоящим из как бы частиц - фононов.

Температура фононного газа зависит от температуры окружающей среды и свойств металла. Тогда любой металл - это смесь электронного и фононного газов, находящихся в термодинамическом равновесии.При контакте двух разных металлов в отсутствии внешнего поля более “горячий” электронный газ проникает в зону более “холодного”, создавая известную всем контактную разность потенциалов.

При прикладывании разности потенциалов к переходу, т.е. протекании тока через границу двух металлов, электроны забирают энергию у фононов одного металла и передают ее фононному газу другого. При смене полярности передача энергии, а значит, нагрев и охлаждение меняют знак.

В полупроводниках за перенос энергии отвечают электроны и “дырки”, но механизм переноса тепла и появления разности температур сохраняется. Разность температур увеличивается до тех пор, пока не истощатся высокоэнергетичные электроны. Наступает температурное равновесие. Такова современная картина описания эффекта Пельтье .

Из нее понятно, что эффективность работы элемента Пельтье зависит от подбора пары материалов, силы тока и скорости отвода тепла от горячей зоны. Для современных материалов (как правило, это полупроводники) КПД составляет 5-8%.

А теперь о практическом применении эффекта Пельтье. Для его увеличения отдельные термопары (спаи двух различных материалов) собираются в группы, состоящие из десятков и сотен элементов. Основное назначение таких модулей - это охлаждение небольших объектов или микросхем.

Термоэлектрический охлаждающий модуль

Широкое применение модули на эффекте Пельтье нашли в приборах ночного видения с матрицей инфракрасных приемников. Микросхемы с зарядовой связью (ПЗС), которые сегодня применяют и в цифровых фотоаппаратах, требуют глубокого охлаждения для регистрации изображения в инфракрасной области. Модули Пельтье охлаждают инфракрасные детекторы в телескопах, активные элементы лазеров для стабилизации частоты излучения, в системах точного времени. Но это все применения военного и специального назначения.

С недавних пор модули Пельтье нашли применение и в бытовых изделиях. Преимущественно, в автомобильной технике: кондиционеры, переносные холодильники, охладители воды.

Пример практического использования эффекта Пельтье

Наиболее интересным и перспективным применением модулей является компьютерная техника. Высокопроизводительные микропроцессоры процессоры и чипы видеокарт выделяют большое количество тепла. Для их охлаждения применяют высокоскоростные вентиляторы, которые создают значительные акустические шумы. Применение модулей Пельтье в составе комбинированных систем охлаждения устраняют шум при значительном отборе тепла.

Компактный USB-холодильник с использованием модулей Пельтье

И, наконец, закономерный вопрос: заменят ли модули Пельтье привычные системы охлаждения в компрессионных бытовых холодильниках? На сегодняшний день это невыгодно с точки зрения эффективности (малый КПД) и цены. Стоимость мощных модулей еще достаточно высока.

Но техника и материаловедение не стоят на месте. Исключить возможность появления новых, более дешевых материалов с большим КПД и высоким значением коэффициентом Пельтье нельзя. Уже сегодня появляются сообщения из исследовательских лабораторий об удивительных свойствах наноуглеродных материалов, которые радикально смогут изменить ситуацию с эффективными системами охлаждения.

Появились сообщения о высокой термоэлектрической эффективности кластратов - твердотельных растворов, похожих по строению на гидраты. Когда эти материалы выйдут из исследовательских лабораторий, то совершенно бесшумные холодильники с неограниченным сроком службы заменят наши привычные домашние модели.

P.S. Одной из самых интересных особенностей термоэлектрической технологии является то, что она может не только использовать электрическую энергию для получения тепла и холода, но также благодаря ей можно запустить обратный процесс, и, например, из тепла получить электрическую энергию .

Пример того, как можно получить электроэнергию из тепла с использованием термоэлектрического модуля () смотрите на этом видео:

А что Вы думаете по этому поводу? Жду Ваших комментариев!

Андрей Повный

Явление возникновения термо-ЭДС было открыто немецким физиком Томасом Иоганном Зеебеком в далеком в 1821 году. А заключается это явление в том, что в замкнутой электрической цепи, состоящей из соединенных последовательно разнородных проводников, при условии что их контакты находятся в условиях различных температур, возникает ЭДС.

Данный эффект, названный по имени его первооткрывателя эффектом Зеебека, называют теперь просто термоэлектрическим эффектом .

Если цепь состоит всего из пары разнородных проводников, то такая цепь называется . В первом приближении можно утверждать, что величина термо-ЭДС зависит лишь от материала проводников и от температур холодного и горячего контактов. Таким образом, в небольшом интервале температур термо-ЭДС пропорциональна разности температур холодного и горячего контактов, а коэффициент пропорциональности в формуле называется коэффициентом термо-ЭДС.

Так например, при разности температур в 100°С, при температуре холодного контакта 0°С, пара медь-константан обладает термо-ЭДС величиной в 4,25мВ.

Между тем, термоэлектрический эффект имеет в своей основе три составляющих:

Первый фактор — различие у разных веществ зависимости средней энергии электронов от температуры. В результате, если при нагреве проводника на одном его конце температура выше, то там электроны приобретают большие скорости, чем электроны на холодном конце проводника.

Кстати, у полупроводников с нагревом растет и концентрация электронов проводимости. Электроны с высокой скоростью устремляются к холодному концу, и там происходит накопление отрицательного заряда, а на горячем конце получается нескомпенсированный положительный заряд. Так возникает составляющая термо-ЭДС, называемая объемной ЭДС.

Второй фактор — у разных веществ контактная разность потенциалов зависит от температуры по-разному. Это связано с различием энергии Ферми у каждого из проводников, сведенных в контакт. Контактная разность потенциалов, возникающая при этом, оказывается пропорциональной разности энергий Ферми.

Получается электрическое поле в тонком приконтактном слое, причем разность потенциалов с каждой стороны (у каждого из сведенных в контакт проводников) будет одинаковой, и при обходе цепи по замкнутому контуру, результирующее электрическое поле будет равно нулю.

Но если температура одного из проводников будет отличаться от температуры другого, то в связи с зависимостью энергии Ферми от температуры, изменится и разность потенциалов. В результате возникнет контактная ЭДС — вторая составляющая термо-ЭДС.

Третий фактор — фононное увеличение ЭДС . При условии, что в твердом теле имеет место температурный градиент, количество фононов (фонон - квант колебательного движения атомов кристалла), движущихся в направлении от горячего конца к холодному будет преобладать, в результате чего вместе с фононами большое количество электронов будет увлекаться в сторону холодного конца, и там станет накапливаться отрицательный заряд, пока процесс не придет в равновесие.

Это дает третью составляющую термо-ЭДС, которая в условиях низких температур может в сотни раз превосходить две упомянутые выше составляющие.

В 1834 году французский физик Жан Шарль Пельтье открыл обратный эффект. Он обнаружил, что при прохождении электрического тока через контакт (спай) двух разнородных проводников выделяется или поглощается тепло.

Количество поглощаемого или выделяемого тепла связано с видом спаянных веществ, а также с направлением и величиной протекающего через спай электрического тока. Коэффициент Пельтье в формуле численно равен коэффициенту термо-ЭДС, умноженному на абсолютную температуру. Это явление известно теперь как .

В сути эффекта Пельтье в 1838 году разобрался русский физик Эмилий Христианович Ленц. Он экспериментально проверил эффект Пельтье, поместив каплю воды на место спая образцов сурьмы и висмута. Когда Ленц пропускал через цепь электрический ток, вода превращалась в лед, но когда ученый изменил направление тока на противоположное, лед быстро растаял.

Ученый установил таким образом, что при протекании тока не только выделялось джоулево тепло, но происходило также поглощение или выделение дополнительного тепла. Это дополнительное тепло получило название «тепло Пельтье».

Физическая основа эффекта Пельтье заключается в следующем. Контактное поле в месте спая двух веществ, созданное контактной разностью потенциалов, либо препятствует прохождению пропускаемого через цепь тока, либо способствует ему.

Если ток пропускается против поля, то требуется работа источника, который должен затратить энергию на преодоление контактного поля, в результате чего и происходит нагрев места спая. Ежели ток направлен так, что контактное поле поддерживает его, то работу совершает контактное поле, и энергия отнимается у самого вещества, а не расходуется источником тока. В результате вещество в месте спая охлаждается.

Наиболее выразителен эффект Пельтье у полупроводников, благодаря чему стали возможными модули Пельтье или термоэлектрические преобразователи .

В основе элемента Пельтье два полупроводника, контактирующие между собой. Эти полупроводники отличаются энергией электронов в зоне проводимости, поэтому при протекании тока через место контакта, электроны вынуждены приобретать энергию, чтобы смочь перейти в другую зону проводимости.

Так, при перемещении в более высокоэнергетическую зону проводимости другого полупроводника, электроны поглощают энергию, охлаждая место перехода. При обратном направлении тока электроны отдают энергию, и происходит нагрев дополнительно к джоулеву теплу.

Полупроводниковый модуль Пельтье состоит из нескольких пар , имеющих форму маленьких параллелепипедов. Обычно в качестве полупроводников используют теллурид висмута и твердый раствор кремния и германия. Полупроводниковые параллелепипеды соединены между собой попарно медными перемычками. Эти перемычки служат контактами для теплообмена с керамическими пластинками.

Перемычки расположены так, что с одной стороны модуля только перемычки обеспечивающие переход n-p, а с другой стороны — только перемычки обеспечивающие переход p-n. В результате, при подаче тока, одна сторона модуля нагревается, другая — охлаждается, а если полярность питания сменить на противоположную, то сторона нагрева и охлаждения соответственно поменяются местами. Таким образом, при прохождении тока происходит перенос тепла с одной стороны модуля на другую, и возникает разность температур.

Если теперь одну сторону модуля Пельтье нагревать, а другую охлаждать, то в цепи возникнет термо-ЭДС, то есть будет реализован эффект Зеебека. Очевидно, эффект Зеебека (термоэлектрический эффект) и эффект Пельтье — две стороны одной медали.

Сегодня можно легко приобрести модули Пельтье по относительно доступной цене. Наиболее популярны модули Перьтье типа ТЕС1-12706, содержащие 127 термопар, и рассчитанные на питание 12 вольт.

При максимальном потреблении в 6 ампер, достижима разница температур в 60°С, при этом заявляемый производителем безопасный диапазон рабочих температур — от -30°С до +70°С. Размер модуля 40мм х 40мм х 4мм. Модуль может работать как в режиме охлаждения-нагревания, так и в .

Есть и более мощные модули Пельтье, например TEC1-12715, рассчитанный на 165 Вт. При питании напряжением от 0 до 15,2 вольт, с силой тока от 0 до 15 ампер, данный модуль способен развить разность температур в 70 градусов. Размер модуля также 40мм х 40мм х 4мм, однако диапазон безопасных рабочих температур шире - от -40°С до +90°С.

В таблице ниже приведены данные по модулям Пельтье, широко доступным сегодня на рынке:

Андрей Повный

Что такое элемент Пельтье – электро-, термопреобразователь, который состоит из нескольких пар (в отдельных случаях одной) полупроводников различных по свойству типов («n» и «р»), последние соединяются перемычками из металла – в основном это - медь. На практике данное устройство создает температурную разность на разных концах поверхности при протекании энергии электрического тока.

Одним из наиболее простейших вариантов данного устройства Пельтье в практическом использовании является модификация ТЕС1-12706, изображенная на рисунке 1.

В корне принципа работы положен термоэлектрический эффект Пельтье. Другими словами - при протекании и под действием электрического тока создается разница температур в местах контактов термопар - полупроводников «n» и «р» - типа.

Элементы Пельтье – доволи таки «чувствительные устройства» к перегреву и высоким температурам. К ним предъявляются высокие требования к эксплуатации, при невыполнении которых, устройство быстро выходит из строя. Очень важно отводить тепло, для этой цели необходимо устанавливать радиатор или вентилятор, в противном случае не достигается температура холодной стороны относительно горячей.

Как работает элемент Пельтье

Представим, что электрический ток проходит через термическую пару, как показано на рисунке 2.

В этом случае происходит процесс поглощения энергии тепла на полупроводниковом контакте n - p и процесс выделения тепловой энергии на p - n контакте. В итоге часть термопары полупроводника, который сопрягается с n - p контактом, будет охлаждаться, а вторая часть с другой противоположной стороны - соответственно, нагреваться.

В том случае, когда поменяем полярность по току, то происходит процессы нагревания и охлаждения, соответственно, также поменяются.

Обратный процесс эффекта Пельтье приводит к тому, что при подводе теплоты к одной стороне термопреобразователя получают энергию электрического тока.

Конечно на практике, применение одной термопары не хватает для полного отвода тепловой энергии, поэтому в преобразователе применяют большое количество. Электрическая цепь собирается из термопар последовательно. В то же время в конструкции термопреобразовательных элементов: нагревающие термопары располагаются на другой стороне относительно охлаждающих.

Устройство элемента Пельтье очень простое. Термические пары конструируются между двумя платинами, выполненными из керамики. Соединение термопар производится медными проводниками (шинами). Количество термопар определяется назначением термопреобразователя, его мощности и места установки и может применяться от одной до нескольких сотен штук.

Основными элементами термопреобразователя являются: полупроводники р - типа, n - типа, керамические пластины, медные сопряжения - проводники; контакты подвода электрического тока «плюс» и «минус». Для элемента Пельтье разница по температурам разных краев термопар достигает до 70 градусов по Цельсию. Чтобы увеличить данную разницу требуется увеличить каскад последовательного включения термопар.

Основные эксплуатационные характеристики элемента Пельтье

Данное устройство в целом идеально работает в тех случаях, когда хорошо и надежно контактируют термопары с охладительным устройством, будь то радиатор охлаждения или вентилятор охлаждения со змеевиком, то есть – хороший теплосъем.

Модули Пельтье, как их часто называют, очень чувствительны к перепадам по току и напряжению (не более 5 %). Под действием высоких температур (наиболее критическая для элементов до 150 градусов) эффективность снижается во много раз (до 40 %) и модуль очень быстро ломается.

Как правило, в схему работы полупроводниковых элементов недопустимым условием является приспособление релейных устройств: ограничивающих мощность или регулирующих. Это приводит к деградации кристаллических составляющих и к неисправности в скором времени элемента.

Частое включение и выключение устройств также негативно влияет на работу и срок эксплуатации, и его долговечность функционирования. Согласно законов физики - любой нагрев материала приводит к его тепловому расширению, а охлаждение - к сжатию. Соответственно, особенно слабыми местами в полупроводниковых элементах являются «паечные», где из-за механического движения возможно появление дефектов в виде микротрещин и в конце концов к разрыву цепи.

Коэффициент теплопроводности термических пар элемента Пельтье достаточно высок, что с одной стороны является достоинством, а с другой стороны ограничивает срок эксплуатации и расчетное число циклов «стоп-старт-стоп».

Достоинства и недостатки модуля Пельтье

Сравнивать устройство Пельтье с другими охладительными установками с различным приводом в принципе невозможно и нецелесообразно, так как в первом случае имеют полупроводниковые материалы в виде кристаллов, а во втором случае рабочее тело - газ или жидкость (к примеру: компрессорный холодильник). В различных областях применяются и те и другие устройства.

К преимуществам элементов Пельтье можно отнести:

  • полное отсутствие механики движения и вращающихся частей, а также жидкостей, газов;
  • абсолютно нет шума работы устройств;
  • сравнительно малые размеры;
  • двухфункциональность: нагревание и охлаждение при изменении полярности;

К недостаткам можно отнести:

  • относительно низкий коэффициент полезного действия;
  • требование постоянного источника энергии, питания;
  • число пусков и остановов ограничено;
  • плавность отключения и включения термоэлектрических устройств;
  • контроль нагрева с одной стороны или охлаждения с другой с помощью вентилятора.

Опрос: Понятно ли что такое и как устроен Элемент Пельтье

Элементом Пельтье называют термопару, иначе говоря, устройство изменяющее температуру и работающее в соответствии с одноимённым принципом Пельтье, то есть, демонстрируя разность температур, возникающую с момента подачи электроэнергии. В англоязычных источниках фигурирует в роли термоэлектрического охладителя. Обратный данному эффекту носит название эффекта Зеебека.

Принцип работы устройства

Элемент Пельтье функционирует благодаря взаимодействию одного токопроводящего материала с другим, отличным по энергетическому уровню электронов в проводящей области. Прохождение по такому каналу связи наделяет электрон большим энергетическим запасом, что после позволяет ему перейти в проводящую область с более высоким энергетическим уровнем. Поглощение этой энергии приводит к понижению температуры в точке соединения проводников. Когда же происходит обратное движение тока, контакт нагревает, что находит выражение в виде стандартного теплового эффекта.

При условии, что по одной стороне подключён теплоотвод, в момент эксплуатации радиаторной системы вторая сторона даёт сильное охлаждения (до десятков градусов ниже температурного уровня окружающей среды). Между величиной тока и степенью охлаждения наблюдается прямая зависимость. При смене полярности также меняются положениями стороны нагрева и охлаждения.

Когда элемент Пельтье взаимодействует с деталями, выполненными из металла, то оказываемый им эффект уменьшается во много раз, и температурный контраст становится мало заметен под действием разнообразных явлений связанных с теплопроводностью цепи. По этой причине практическое применение подразумевает использование сразу двух полупроводников.

Сочетать термопары можно в любых количествах в пределах сотни, что делает возможным создание элемента Пельтье любой холодильной мощности.

Термоэлектрический модуль

Особенно явно эффект Пельтье можно наблюдать при использовании p- и n- полупроводников. В соответствии с направлением электротока при переходе через p-n-соединения происходит поглощение, либо выделение энергии.

Именно такая конструкция применяется в ТЭМ (термоэлектрическом модуле). Единичный элемент термоэлектрического модуля – это , конструкция которой представляет собой объединение p- и n- проводника. Если последовательно соединить несколько подобных элементов, то поглощение теплоты будет происходить на n-p-контакте, а выделение на p-n-контакте. В результате возникает уже описанная ранее ситуация с разностью температур. Согласно общепринятому принципу горячей является та сторона, к которой подведены провода и на схеме она всегда расположена внизу.

Рис.1: Термоэлектрический модуль Пельтье

В ТЭМ термопары фиксируются между парой пластин из керамических материалов. Каждая из веток спаивается с медными проводящими площадками (шинками), которые в свою очередь скрепляются с теплопроводящим материалом, например, оксидом алюминия.

Определять уровень рабочего напряжения модуля следует, исходя из количества составных элементов. Наиболее распространённым вариантом является 127-парные модульные конструкции с наибольшим уровнем напряжения в 16 Вольт. Но для их работы обычно достаточно 75% от этого значения. Мало того именно эта цифра является наиболее подходящей, поскольку отвечает и требованиям к рабочим условиям, и является достаточно экономичной. При повышении напряжения мощность почти не увеличится, а вот энергопотребление ощутимо возрастёт.

Применение на практике

На сегодняшний день применение элемента Пельте особенно актуально в устройствах следующих типов:

  • Холодильники;
  • Кондиционеры;
  • Автомобильные охладители;
  • Кулеры для воды;
  • Видеокарты для персонального компьютера.

В целом, можно сказать, что элемент Пельтье стал неотъемлемой частью разнообразных холодильных и кондиционирующих систем. Использование этого устройства является отличным подходом к решению проблемы перегрева оборудования. В настоящее время элемент Пельтье также может быть использован для охлаждения акустической и звуковой системы, поскольку его работа является совершенно бесшумной и идеально подходит для таких целей.

Есть несколько качеств элемента Пельтье, которые пользуются большим спросом:

  • Они обеспечивают достаточно мощную теплоотдачу;
  • Имеют весьма скромные размеры, что позволяет использовать их практически в любых устройствах;
  • Способны к сохранению одного и того же температурного режима на протяжении продолжительного срока (благодаря радиаторам);
  • Отличаются изрядной долговечность, поскольку укомплектованы из ряда цельных недвижимых компонентов.

Самая простая составляющая элемента выглядит как пара медных проводников, к которым подключены контакты, соединительные провода, оснащённые изолирующим элементом (для его изготовления используется нержавеющая сталь или керамика).

Как самостоятельно изготовить элемент Пельтье

Простота конструкции этого устройства располагает к тому, чтобы изготовить его самостоятельно. Тем более, что сфера его практического применения практически не ограничена: холодильники, кондиционеры и другая техника.

Предварительно следует заготовить пару пластин из металла, а также понадобится проводка с контактами. Прежде всего, запаситесь проводниками, которые будут установлены рядом с основанием устройства. Для этих целей лучше всего подойдут PP-проводники.

Далее, не забудьте, что на выходе должны быть установлены полупроводники, которые будут подавать тепло к верхней пластине. Для монтажа элемента потребуется паяльник. На финальном этапе понадобится подключить пару проводов. Один локализуется около основания и надёжно крепится рядом с крайним проводником. Значимо, чтобы не было никаких соприкосновений с пластиной.

Место крепления второго проводника располагается рядом с верхней частью и закрепляется аналогичным образом – у крайнего проводника.

Для проверки элемента на предмет работоспособности нужно будет воспользоваться тестером. Прибор подсоединяется к проводам и производится замер вольтажа. Стандартный показатель отклонения напряжения достигает примерно 23 Вольт.

Мощность элемента Пельте находится в прямой зависимости от его габаритов, это следует учитывать при самостоятельной сборке или монтаже. Установка недостаточно мощного элемента не предотвратит поломку техники, а лишь отсрочит её. В то же время избыточная мощность вызывает падение уровня температуры до критического уровня, когда влага, находящаяся в воздухе может начать конденсировать и оседать на поверхности устройств, что особенно опасно для электронных приборов.

Помимо этого, другая сторона модуля является источником достаточно большого количества тепла, поэтому для обеспечения его безопасной работы требуется вентилятор довольно большой мощности.

Как изготовить генератор на основе элемента Пельтье?

Генераторы на основе элемента Пельтье особенно интересуют людей, которые ввиду достаточно продолжительной отрезанности от цивилизации нуждаются в простом и доступном источнике энергии. Также они широко применяются при критическом перегреве деталей персонального компьютера.

Рис.2: Генератор на основе элемента Пельтье.

Элементы Пельтье имеют достаточно интересный принцип действия, но помимо этого обладают одной любопытной особенностью: если к ним прилагается разность температур, то они продуцируют электричество. Один из вариантов генератора на базе этого устройства предполагает следующую конструкцию:

По двум трубкам (одна для входа, другая для выхода) движется пар, который направляется в полость теплообменника, сконструированный из пластины (материал: алюминий), имеющей толщину 1 см.

К каждому отверстию теплообменника подведено соединение с одним каналом. Габариты теплообменника точно дублируют габариты элементов Пельтье. Два элемента фиксируются на двух сторонах теплообменника с помощью четырёх винтов (по 2 на каждую сторону). В результате, благодаря отверстиям и канальцам теплообменника формируется полноценная система сообщающихся отделов, через которые проходит пар. Двигаясь вперёд, пар входит в камеру по одной трубке и выходит через другую, двигаясь к следующей камере. Транслируемое паром тепло достаётся элементам Пельтье, когда пар непосредственно соприкасается с их поверхностью, а также с материалом теплообменника.

Чтобы вплотную прижать элементы к корпусу теплообменника, а также для организации отвода тепловой энергии на «холодную» сторону применяются пластины из алюминия на 0,5 см в толщину. На последнем этапе вся конструкция герметизируется силиконовыми герметиками.

После этого через трубки пускают пар, а конструкция погружается в холодную воду. Вся система целиком начинает работать. Электрический ток будет образовываться до тех пор, пока разница между температурой «горячей» и «холодной» сторон не сократится до минимума.

Есть и более элементарный метод.

Элемент Пельтье выводами подсоединённый к зарядному телефонному кабелю закрепляется на алюминиевом радиаторе (который будет контактировать с «холодной» стороной) с помощь герметика. Сверху на устройство ставится любой горячий предмет, например, кружка с горячим чаем. Через пару секунд телефон можно ставить на зарядку. Зарядка будет продолжаться, пока чай не остынет.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Термопреобразователь (модуль Пельтье) работает по принципу, обратному действию термопары, - появлению разности температур, когда протекает электрический ток.

Как работает элемент Пельтье?

Довольно просто применять модуль Пельтье, принцип работы которого заключается в выделении или поглощении тепла в момент контакта разных материалов при прохождении через него энергетического потока электронов перед контактом и после него отличается. Если на выходе она меньше, значит, там выделяется тепло. Когда электроны в контакте тормозятся электрическим полем, они передают кинетическую энергию кристаллической решетке, разогревая ее. Если они ускоряются, тепло поглощается. Это происходит за счет того, что часть энергии забирается у кристаллической решетки и происходит ее охлаждение.

В значительной степени это явление присуще полупроводникам, что объясняется большой разностью зарядов.

Модуль Пельтье, применение которого является темой нашего обзора, используется при создании термоэлектрических охлаждающих устройств (ТЭМ). Простейшее из них состоит из двух полупроводников p- и n-типов, последовательно соединенных через медные контакты.

Если электроны движутся от полупроводника "p" к "n", на первом переходе с металлической перемычкой они рекомбинируют с выделением энергии. Следующий переход из полупроводника "p" в медный проводник сопровождается "вытягиванием" электронов через контакт электрическим полем. Данный процесс приводит к поглощению энергии и охлаждению области вокруг контакта. Аналогичным образом происходят процессы на следующих переходах.

При расположении нагреваемых и охлаждаемых контактов в разных параллельных плоскостях получится практическая реализация способа. Полупроводники изготавливаются из селена, висмута, сурьмы или теллура. Модуль Пельтье вмещает большое количество термопар, размещенных между керамическими пластинами из нитрида или оксида алюминия.

Факторы, влияющие на эффективность ТЭМ

  • Сила тока.
  • Количество термопар (до нескольких сотен).
  • Типы полупроводников.
  • Скорость охлаждения.

Больших величин достигнуть пока не удалось из-за низкого КПД (5-8 %) и высокой стоимости. Чтобы ТЭМ успешно работал, надо обеспечить эффективный отвод тепла с нагреваемой стороны. Это создает сложности в практическом воплощении способа. Если изменить полярность, холодная и горячая стороны меняются друг с другом.

Достоинства и недостатки модулей

Потребность в ТЭМ появилась с возникновением электронных устройств, нуждающихся в миниатюрных системах охлаждения. Преимущества модулей следующие:

  • компактность;
  • отсутствие подвижных соединений;
  • модуль Пельтье принцип работы имеет обратимый при смене полярности;
  • простота каскадных соединений для повышения мощности.

Главным недостатком модуля является низкий КПД. Это проявляется в больших затратах мощности при достижении требуемого эффекта охлаждения. Кроме того, он обладает высокой стоимостью.

Применение ТЭМ

Пельтье модуль применяется преимущественно для охлаждения микросхем и небольших деталей. Начало было положено для охлаждения элементов военной техники:

  • микросхемы;
  • инфракрасные детекторы;
  • элементы лазеров;
  • кварцевые генераторы.

Термоэлектрический модуль Пельтье постепенно стал применяться в бытовой технике: для создания холодильников, кондиционеров, генераторов, терморегуляторов. Главным его назначением является охлаждение небольших объектов.

Охлаждение процессора

Основные компоненты компьютеров постоянно совершенствуются, что приводит к росту тепловыделения. Вместе с ними развиваются системы охлаждения с применением новаторских технологий, с современными средствами контроля. Модуль Пельтье применение в данной сфере нашел прежде всего в охлаждении микросхем и других радиодеталей. С форсированными режимами разгона микропроцессоров традиционные кулеры уже не справляются. А увеличение частоты работы процессоров дает возможность повысить их быстродействие.

Увеличение скорости вращения вентилятора приводит к значительному шуму. Его устраняют за счет использования модуля Пельтье в комбинированной системе охлаждения. Таким путем передовые фирмы быстро освоили производство эффективных охлаждающих систем, которые стали пользоваться большим спросом.

С процессоров тепло обычно отводится кулерами. Воздушный поток может засасываться снаружи или поступать изнутри системного блока. Главная проблема состоит в том, что температура воздуха порой оказывается недостаточной для теплоотвода. Поэтому ТЭМ стали использовать для охлаждения потока воздуха, поступающего в системный блок, тем самым повышая эффективность теплообмена. Таким образом, встроенный воздушный кондиционер является помощником традиционной системы охлаждения компьютера.

С обеих сторон модуля крепятся алюминиевые радиаторы. Со стороны холодной пластины нагнетается воздух на охлаждение к процессору. После того как он заберет тепло, его выдувает другой вентилятор через радиатор горячей пластины модуля.

Современный ТЭМ управляется электронным устройством с датчиком температуры, где степень охлаждения пропорциональна разогреву процессора.

Активизация охлаждения процессоров создает также некоторые проблемы.

  1. Простые охлаждающие модули Пельтье предназначены для непрерывной работы. При пониженном энергопотреблении также уменьшается тепловыделение, что может вызвать переохлаждение кристалла и последующее зависание процессора.
  2. Если работа кулера и холодильника не будет должным образом согласована, последний может перейти в режим нагрева вместо охлаждения. Источник дополнительного тепла вызовет перегрев процессора.

Таким образом, для современных процессоров нужны передовые технологии охлаждения с контролем работы самих модулей. Подобные изменения режимов работы не происходят с видеокартами, которые также требуют интенсивного охлаждения. Поэтому для них ТЭМ подходит идеально.

Автохолодильник своими руками

В середине прошлого века отечественная промышленность пыталась освоить выпуск малогабаритных холодильников, основанных на эффекте Пельтье. Существующие технологии того времени не позволили этого сделать. Сейчас сдерживающим фактором преимущественно является высокая цена, но попытки продолжаются, и успехи здесь уже достигнуты.

Широкое производство термоэлектрических устройств позволяет создать своими руками небольшой холодильник, удобный для использования в автомобилях. Его основой является "сэндвич", который делается следующим образом.

  1. На верхний радиатор наносится слой теплопроводной пасты типа КПТ-8 и приклеивается Пельтье модуль с одной стороны керамической поверхности.
  2. Аналогично к нему крепится с нижней стороны другой радиатор, предназначенный для помещения в камеру холодильника.
  3. Все устройство плотно сжимается и просушивается в течение 4-5 часов.
  4. На обоих радиаторах устанавливаются кулеры: верхний будет отводить тепло, а нижний - выравнивать температуру в камере холодильника.

Корпус холодильника делается с теплоизолирующей прокладкой внутри. Важно, чтобы он плотно закрывался. Для этого можно использовать обычный пластиковый ящик для инструментов.

Питание 12 В подается из системы автомобиля. Его можно сделать и от сети 220 В переменного тока, с блоком питания. Схема преобразования переменного тока в постоянной применяется самая простая. Она содержит выпрямительный мост и сглаживающий пульсации конденсатор. При этом важно, чтобы на выходе они не превышали величину 5 % от номинального значения, иначе эффективность устройства снижается. У модуля имеются два вывода из цветных проводов. К красному всегда подключается "плюс", к черному - "минус".

Мощность ТЭМ должна соответствовать объему бокса. Первые 3 цифры маркировки означают количество пар полупроводниковых микроэлементов внутри модуля (49-127 и более). выражается двумя последними цифрами маркировки (от 3 до 15 А). Если мощности недостаточно, надо приклеить на радиаторы еще один модуль.

Обратите внимание! Если сила тока будет превосходить мощность элемента, он будет нагреваться с обеих сторон и быстро выйдет из строя.

Модуль Пельтье: генератор электрической энергии

ТЭМ можно использовать для выработки электроэнергии. Для этого надо создать перепад температуры между пластинами, и расположенные между ними термопары будут вырабатывать электрический ток.

Для практического использования нужен ТЭМ не менее чем на 5 В. Тогда с его помощью можно будет заряжать мобильный телефон. Из-за низкого КПД модуля Пельтье потребуется повышающий преобразователь постоянного напряжения. Для сборки генератора понадобятся:

  • 2 модуля Пельтье ТЕС1-12705 с размером пластин 40х40 мм;
  • преобразователь ЕК-1674;
  • алюминиевые пластины толщиной 3 мм;
  • кастрюля для воды;
  • термостойкий клей.

Между пластинами помещаются два модуля на клей, а затем вся конструкция фиксируется на дне кастрюли. Если ее заполнить водой и поставить на огонь, получится необходимая разность температуры, вырабатывающая ЭДС порядка 1,5 В. Подключив модули к повышающему преобразователю, можно повысить напряжение до 5 В, необходимых для зарядки аккумулятора телефона.

Чем больше разница температуры между водой и нижней подогреваемой пластиной, тем генератор работает эффективней. Поэтому надо стараться снижать нагрев воды разными способами: сделать ее проточной, почаще заменять свежей и т. п. Действенным средством увеличения разности температур является каскадное включение модулей, когда они накладываются слоями один на другой. Увеличение габаритных размеров устройства позволяет поместить между пластинами больше элементов и тем самым увеличить общую мощность.

Производительности генератора будет достаточно для зарядки небольших аккумуляторов, работы светодиодных ламп или радиоприемника. Обратите внимание! Для создания термогенераторов потребуются модули, способные работать при 300-400 0 С! Остальные подойдут только для пробных испытаний.

В отличие от других средств альтернативного получения электроэнергии они могут работать во время движения, если создать что-то типа каталитического нагревателя.

Отечественные модули Пельтье

ТЭМ своего производства появились у нас на рынке не так давно. Они отличаются высокой надежностью и имеют хорошие характеристики. Модуль Пельтье, который пользуется широким спросом, имеет размеры 40х40 мм. Он рассчитан на максимальный ток 6 А и напряжение до 15 В.

Отечественный модуль Пельтье купить можно за небольшую цену. При 85 Вт он создает температурный перепад 60 0 С. Вместе с кулером он способен защитить от перегрева процессор с рассеиваемой мощностью 40 Вт.

Характеристики модулей ведущих фирм

Зарубежные устройства представлены на рынке в большем разнообразии. Для защиты процессоров ведущих фирм применяется в качестве холодильника РАХ56В модуль Пельтье, цена которого в комплекте с вентилятором составляет $35.

При размерах 30х30 мм он поддерживает температуру процессора не выше 63 0 С при выделяемой мощности 25 Вт. Для питания достаточно напряжения 5 В, а ток не превышает 1,5 А.

Хорошо подходит под охлаждение процессора модуль Пельтье РА6ЕХВ, обеспечивающий нормальный температурный режим при мощности рассеивания 40 Вт. Площадь его модуля составляет 40х40 мм, а потребляемый ток - до 8 А. Кроме внушительных размеров - 60х60х52,5 мм (вместе с вентилятором) - устройство требует наличия вокруг него свободного пространства. Цена его составляет $65.

Когда применяется модуль Пельтье, технические характеристики у него должны соответствовать потребностям охлаждаемых устройств. Недопустимо, чтобы у них была слишком низкая температура. Это может привести к конденсации влаги, которая губительно действует на электронику.

Модули для изготовления генераторов, такие как отличаются большей мощностью - 72 Вт и 108 Вт соответственно. Их различают по маркировке, всегда наносимой на горячую сторону. Максимальная допускаемая температура горячей стороны у них составляет 150-160 0 С. Чем больше температурный перепад между пластинами, тем выше получается напряжение на выходе. Устройство работает при максимальном температурном перепаде 600 0 С.

Модуль Пельтье купить можно недорого - порядка $10 и менее за штуку, если хорошо поискать. Довольно часто продавцы значительно завышают цены, но можно найти в несколько раз дешевле, если приобретать на распродаже.

Заключение

Эффект Пельтье нашел применение в настоящее время в создании небольших холодильников, необходимых современной технике. Обратимость процесса дает возможность изготовить микроэлектростанции, востребованные для зарядки аккумуляторов электронных устройств.

В отличие от других средств альтернативного получения электроэнергии, они могут работать во время движения, если установить каталитический нагреватель.