Отличительные особенности контакторов и магнитных пускателей.

Для осуществления дистанционного включения оборудования используется магнитный пускатель или магнитный контактор. Как подключить магнитный пускатель по простой схеме и как подключить реверсивный пускатель мы и рассмотрим в этой статье.

Отличие между магнитным пускателем и магнитным контактором в том, какую мощность нагрузки могут коммутировать эти устройства.

Магнитный пускатель может быть «1», «2», «3», «4» или «5» величины. Например пускатель второй величины ПМЕ-211 выглядит так:

Названия пускателей расшифровываются следующим образом:

  • Первый знак П — Пускатель;
  • Второй знак М — Магнитный;
  • Третий знак Е, Л, У, А… — это тип или серия пускателя;
  • Четвертый цифровой знак — величина пускателя;
  • Пятый и последующие цифровые знаки — характеристики и разновидности пускателя.

Некоторые характеристики магнитных пускателей можно посмотреть в таблице

Отличия магнитного контактора от пускателя весьма условны. Контактор выполняет ту же роль, что и пускатель. Контактор производит аналогичные подключения, как и пускатель, только электропотребители имеют большую мощность, соответственно и размеры у контактора значительно больше, и контакты у контактора значительно мощней.Магнитный контактор имеет немного другой внешний вид:

Габариты контакторов зависят от его мощности. Контакты коммутирующего прибора необходимо разделять на силовые и управляющие. Пускатели и контакторы необходимо применять когда простые устройства коммутации не могут управлять большими токами. За счёт этого магнитный пускатель может размещаться в силовых шкафах рядом с силовым устройством, которые он подключает, а все его управляющие элементы в виде кнопок и кнопочных постов на включение могут размещаться в рабочих зонах пользователя.
На схеме пускатель и контактор обозначаются таким схематичным знаком:

где A1-A2 катушка электромагнита пускателя;

L1-T1 L2-T2 L3-T3 силовые контакты, к которым подключается силовое трехфазное напряжение (L1-L2-L3) и нагрузка (T1-T2-T3), в нашем случае электродвигатель;

13-14 контакты, блокирующие пусковую кнопку управления двигателем.

Данные устройства могут иметь катушки электромагнитов на напряжения 12 В, 24 В, 36 В, 127 В, 220 В, 380 В. Когда требуется повышенный уровень безопасности, есть возможность использовать электромагнитный пускатель с катушкой на 12 или 24 В, а напряжение цепи нагрузки может иметь 220 или 380 В.
Важно знать, что подключенные пускатели для подключения трехфазного двигателя способны обеспечить дополнительную безопасность при случайной потере напряжения в сетях. Это связано с тем, что при исчезновении тока в сети, напряжение на катушке пускателя пропадает и силовые контакты размыкаются. А когда напряжение возобновится, то в электрооборудовании будет отсутствовать напряжения до тех пор, покуда кнопку «Пуск» не активируют. Для подключения магнитного пускателя имеется несколько схем.

Стандартная схема коммутации магнитных пускателей

Это схема подключения пускателя требуется для того, чтобы произвести запуск двигателя через пускатель с помощью кнопки «Пуск» и обесточивания этого двигателя кнопкой «Стоп». Это проще понимается, если разделить схему на две части: силовую и цепь управления.
Силовую часть схемы следует запитать трёхфазным напряжением 380 В, имеющим фазы «A», «B», «C». Силовая часть состоит из трёхполюсного автоматического выключателя, силовых контактов магнитного пускателя «1L1-2T1», «3L2-4T2», «5L3-6L3», а также асинхронного трехфазного электродвигателя «M».

К управляющей цепи подаётся питание 220 вольт от фазы «A» и к нейтрали. К схеме управляющей цепи относится кнопка «Стоп» «SB1», «Пуск» «SB2», катушка «KM1» и вспомогательный контакт «13HO-14HO», что подключён параллельно контактам кнопки «Пуску». Когда автомат фаз «A», «B», «C», включается, ток проходит к контактам пускателя и остаётся на них. Питающая цепь управления (фаза «А») проходит через кнопку «Стоп» к 3 контакту кнопки «Пуск», и параллельно на вспомогательный контакт пускателя 13HO и остаётся там на контактах.
Если активируется кнопка «Пуск», к катушке приходит напряжение — фаза «А» с пускателя «KM1». Электромагнит пускателя срабатывает, контакты «1L1-2T1», «3L2-4T2», «5L3-6L3» замыкаются, после чего напряжение 380 вольт подается на двигатель по данной схеме подключения и начинает свою работу электродвигатель. При отпускании кнопки «Пуск» ток питания катушки пускателя течет через контакты 13HO-14HO, электромагнит не отпускает силовые контакты пускателя, двигатель продолжает работать. При нажатии кнопки «Стоп» цепь питания катушки пускателя обесточивается, электромагнит отпускает силовые контакты, напряжение на двигатель не подается, двигатель останавливается.

Как подключить трехфазный двигатель можно дополнительно посмотреть на видео:

Схема коммутации магнитных пускателей через кнопочный пост

Схема для подключения магнитного пускателя к электродвигателю через кнопочный пост, включает в себя непосредственно сам пост с кнопками «Пуск» и «Стоп», а также две пары замкнутых и разомкнутых контактов. Также сюда относится пускатель с катушкой 220 В.

Питание для кнопок берётся с силовых контактовых клемм пускателя, а напряжение доходит к кнопке «Стоп». После этого по перемычке оно проходит сквозь нормально замкнутый контакт на кнопку «Пуск». Когда активирована кнопка «Пуск», нормально разомкнутый контакт будет замкнут. Отключение происходит путём нажатия на кнопку «Стоп», тем самым размыкая ток от катушки и после действия возвратной пружины, пускатель отключится и устройство обесточится. После выполнения вышеуказанных действий электродвигатель будет отключён и готов к последующего пуска с кнопочного поста. В принципе работа схемы аналогична предыдущей схемы. Только в данной схеме нагрузка однофазная.

Реверсивная схема коммутации магнитных пускателей

Схема подключения реверсивного магнитного пускателя применяется тогда, когда требуется обеспечение вращение электродвигателя в обоих направлениях. К примеру, реверсивный пускатель устанавливается на лифт, грузоподъемный кран, сверлильный станок и прочие приборы требующие прямой и обратный ход.

Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме. Выглядит он так:

Схема подключения реверсивного магнитного пускателя отличается от других схем тем, что имеет два совершенно одинаковых пускателя, которые работают попеременно. При подключении первого пускателя двигатель вращается в одну сторону, при подключении второго пускателя, двигатель вращается в противоположную сторону. Если вы внимательно посмотрите на схему, то заметите, что при переменном подключении пускателей, две фазы меняются местами. Это и заставляет трехфазный двигатель вращаться в разные стороны.

К имеющемуся в предыдущих схемах пускателю добавлены второй пускатель «КМ2» и дополнительные цепи управления вторым пускателем. Цепи управления состоят из кнопки «SB3», магнитного пускателя «КМ2», а также изменённой силовой частью подачи питания к электродвигателю. Кнопки при подключении реверсивного магнитного пускателя имеют названия «Вправо» «Влево», но могут иметь и другие названия, такие, как «Вверх», «Вниз». Чтобы защитить силовые цепи от короткого замыкания, до катушек добавлены два нормально замкнутых контакта «КМ1.2» и «КМ2.2», что взяты от дополнительных контактов на магнитных пускателях КМ1 и КМ2. Они не дают возможности включиться обоим пускателям одновременно. На выше приведенной схеме цепи управления и силовые цепи одного пускателя имеют один цвет, а другого пускателя — другой цвет, что облегчает понимание, как работает схема. Когда включается автоматический выключатель «QF1», фазы «A», «B», «C» идут к верхним силовым контактам пускателей «КМ1» и «КМ2», после чего ожидают там включения. Фаза «А» питает управляющие цепи от защитного автомата, проходит через «SF1» — контакты тепловой защиты и кнопку «Стоп» «SB1», переходит на контакты кнопок «SB2» и «SB3» и остается в ожидании нажатия на одну из этих кнопок. После нажатия пусковой кнопки ток движется через вспомогательный пусковой контакт «КМ1.2» или «КМ2.2» на катушку пускателей «КМ1» или «КМ2». После этого один из реверсивных пускателей сработает. Двигатель начинает вращаться. Что бы запустить двигатель в обратную сторону, надо нажать кнопку стоп (пускатель разомкнет силовые контакты), двигатель обесточится, дождаться остановки двигателя и после этого нажать другую пусковую кнопку. На схеме показано, что подключен пускатель «КМ2». При этом его дополнительные контакты «КМ2.2» разомкнули цепь питания катушки «КМ1», что не даст случайного подключения пускателя «КМ1».

Контакторы и магнитные пускатели – это устройства, являющиеся весьма важными элементами электросети. Несмотря на их основное назначение – коммутацию силовых и управленческих сетей, а также некоторую схожесть, эти приборы совершенно разные. Каждый из них имеет свои особенности и функции. Что между ними общего, а что отличается – попробуем выяснить.

Стандартный электромагнитный пускатель

Электромагнитный пускатель – это некий коммутационный прибор асинхронного двигателя. Ярким его примером, можно считать пускозащитное реле холодильного аппарата.

Пускатель предназначен для управления асинхронных двигателей, а также защиты их от перегрузки. Иногда эти устройства применяют для включения и отключения электрических установок с дистанционным управлением (например, внутреннее и внешнее освещение).

Разновидностей пускателей много, поэтому можно просто выделить основные группы из них:

  • По номинальному напряжению;
  • По мощности оказываемой нагрузки;
  • По исполняемым функциям: нереверсивные и реверсивные;
  • В зависимости от вида корпуса: закрытые и открытые (бескорпусные);
  • По количеству контактов, полюсов и различных дополнительных блок-контактов.

Магнитный пускатель должен обязательно соответствовать двигателю, с которым он работает.

Принцип работы механизма заключается в следующем:

  • Во время попадания тока на катушку возникает магнитный разряд;
  • Затем он замыкается через имеющиеся внутри сердечники и воздух между ними;
  • Далее элементы притягиваются и замыкают необходимые контакты.

Что такое магнитный контактор и его предназначение

Магнитный контактор – это электрический дистанционный аппарат, размыкающий и замыкающий силовые цепи, посредством действия электромагнита.

Кстати, контакторы не обеспечивают защиту электрических сетей от перегрева, так как у них нет защитных элементов.


Контактор состоит из:

  • Контактов силовой цепи;
  • Электромагнитной системы;
  • Дугогасительного аппарата;
  • Блок-контактов.

Особенность электромагнитных контакторов заключается в их способности разрывать цепь одновременно в нескольких местах.

В зависимости от вида тока контакторы могут быть переменными и постоянными. Последние нужны для управления приемников электросети, в устройстве высоковольтных выключателей, в автоматических механизмах повторного включения.

Контакторы, взаимодействующие с переменным током, используются в асинхронных двигателях, для работы нагревающих элементов и других электрических устройств.

Электромагнитные пускатели, контакторы-автоматы

Автоматические выключатели (автоматы) предназначены для надежной и быстрой защиты сетевых проводов от перегрузки и короткого замыкания. Кроме этого, их используют для управления редких отключений или включений.

Необходимость применения автоматов:

  • Обычно от перегрузок электродвигатель защищает тепловое реле , но на этом его защитная функция заканчивается, так как от замыканий такое устройство все равно не спасет;
  • Контакторы тоже не обеспечивают надлежащую защиту, так как не имеют в своей конструкции соответствующих элементов.

Поэтому используя магнитные пускатели вместе с тепловыми реле, необходимо дополнительно ставить предохранители или автоматы для защиты от замыканий.

Чем отличается контактор от магнитного пускателя: особенности механизмов

Контакторы и электромагнитные пускатели довольно похожие друг на друга механизмы, но со своими особенностями и различиями.

Итак, в чем же разница между этим приборами:

  1. Внешний вид – контактор гораздо больше и имеет немалый вес. Пускатель же довольно миниатюрен и весит совсем немного.
  2. Конструкция – контакторы не имеют корпуса, а только дугогасительные решетки. Соответственно, они больше подвержены влиянию окружающей среды. Что касается пускателя, то этот прибор защищен корпусом из пластика, но не имеет дугогасительного механизма. А при наличии дополнительного кожуха, прибор можно устанавливать практически везде, в отличие от контактора.
  3. Назначение – пускатели помогают работать асинхронным двигателям и другому оборудованию, а контакторы коммутируют силовые цепи.

Разобравшись в чем же отличие между этими механизмами, можно более точно подобрать прибор, исходя из заявленных потребностей.

Самостоятельный ремонт контакторов и магнитных пускателей

При активной работе пускателя, на его контактах может появляться металлический нагар, окись и копоть, которые существенно будут сказываться на функционировании механизма.

Если такое произошло, контакты нужно почистить:

  • Сделать это можно тонким напильником или надфилем;
  • Затем контакты протираются салфеткой, смоченной в уайт-спирте.

Но такую процедуру «чистки» нужно проводить лишь в засоренных приборах, не трогая исправные механизмы, так как такая профилактика может стирать токопроводящий слой на контактах, делая их боле тонкими и уязвимыми.

Места соприкосновения сердечника и якоря можно также почистить ветошью, предварительно смоченную в спирте.

Если при работе устройства слышен гул, на это могут быть такие причины:

  • Трещины на катушке;
  • Перекос катушки или выход ее из строя;
  • Не хватает напряжения в сети;
  • Слишком большая отдача возвратной пружины.

Если возникли проблемы с изоляцией катушки, ремонт состоит в следующем: нужно снять слой ее обмотки и допаять, изолировав потом паечное место. Впрочем, если повреждения слишком большие – элемент проще заменить на новый.

Иногда случается разнобой при замыкании пластин. Этот момент можно исправить затяжкой хомутика, который держит основные валовые контакты.

Но если аппарат все еще неисправен, лучше обратиться за помощью к специалистам, которые проведут техническое обследование прибора, выяснят причину неполадки и постараются ее устранить. Все неисправные детали не подлежащие ремонту, будут заменены.

Что такое контакторы и магнитные пускатели (видео)

5.1 Общие сведения

Контактор – аппарат для коммутации силовых эл.цепей. Они широко используются в системах дистанционного управления эл.приводами, автоматики. Категории применения контакторов характеризуются параметрами коммутируемых ими цепей в зависимости от характера нагрузки.

а) контакторы переменного тока: АС-1, АС-2, АС-3, АС-4, АС-11, АС-22.

б) контакторы постоянного тока: ДС-1, ДС-2, ДС-3, ДС-4, ДС-5, ДС-11, ДС-12.

Номинальный ток контактора I ном представляет собой ток, который можно пропускать по замкнутым главным контактам в течение 8 часов без коммутации, причем превышение температуры частей контактора не должна быть больше допустимой.

Номинальным напряжением U H называется наибольшее напряжение коммутируемой цепи, для работы при котором предназначен контактор.

Механическая износостойкость определяется числом циклов включено, отключено – ВО контактора без ремонта и замены его узлов и деталей. Она составляет 10÷20 млн операций.

Коммутационная износостойкость определяется числом циклов ВО цепи с током, после которого требуется замена контактов. Она составляет 2÷3 млн операций.

Собственное время включения состоит из времени нарастания потока в эл.магните до значения потока трогания и времени движения якоря. Большая часть этого времени тратится на нарастание потока.

Собственное время отключения – время с момента обесточивания эл.магнита до момента размыкания контактов. Оно определяется временем спада потока от установившегося значения до потока отпускания.

Контактор имеет следующие основные узлы: контактную систему, дугогасительное устройство, эл.магнит и систему вспомогательных контактов.

5.2 Контакторы постоянного тока

Предназначены для коммутации цепей постоянного тока и приводятся в действие эл.магнитом постоянного тока.

Выпускаются контакторы серии КПВ – 600, типа КТПВ – 600, КП 7, КП 207, КМВ – 521, КМГ16, КМГ19, МК5, МК6, серия МК на постоянном токе и другие.

Номинальные напряжения: главной цепи – 220, 440 В; втягивающей катушки – 24, 48, 60, 110, 220, 440 В.

Контактная система . Применяются линейные перекатывающиеся контакты, а в серии МК мостикового типа. Для предотвращения вибрации контактов контактная пружина создает предварительное нажатие, составляющее примерно 50 % конечного.

Контакторы серии КПВ имеют два исполнения контактной системы: с замыкающими и размыкающими контактами.

В контакторах постоянного тока наибольшее распространение получили дугогасительные устройства с эл.магнитным дутьем с катушкой тока.

Электромагнит. Распространены эл.магниты клапанного типа. С целью повышения механической износостойкости применяется вращение якоря на призме.


При включении эл.магнита преодолеваются усилия возвратной и контактной пружин. Тяговая характеристика эл.магнита должна во всех точках идти выше характеристики этих пружин при минимально допустимом напряжении на катушке 0,85U H и нагретом ее состоянии.

Наиболее тяжелым моментом при включении является преодоление силы в момент касания главных контактов, так как эл.магнит должен развивать значительное усилие при большом рабочем зазоре.

Для контакторов постоянного тока, коэффициент возврата К В = U ОТП / U СР мал (0,2÷0,3), что не позволяет использовать контактор для защиты двигателя от снижения напряжения.

Наибольшее напряжение на катушке не должно превышать 1,1U H , так как при большем напряжении увеличивается износ контактов из-за усиления ударов якоря, а температура катушки может превышать допустимое значение.

С целью уменьшения мдс катушки, а следовательно, и потребляемой ею мощности рабочий ход якоря выбирается небольшим – 8-10 мм. Для надежного гашения дуги при малых токах требуется зазор контактов 17-20 мм. В связи с этим расстояние точки касания подвижного контакта от оси вращения подвижной системы берется в 1,5-2 раза больше, чем расстояние от оси полюса до оси вращения.

5.3 Контакторы переменного тока.

Выпускаются на токи от 10 до 1000А при числе главных контактов от одного до пяти (рис.31)

Из-за более благоприятных условий гашения дуги зазор между главными контактами делается меньше, чем в контакторах постоянного тока.

Подвижный контакт в отличие от контакторов постоянного тока плоский без перекатывания.

Рисунок 31. Конструкция электромагнита контактора переменного тока.

Для удобства эксплуатации подвижный и неподвижный контакты сделаны легко сменяемыми.

В контакторах переменного тока распространена мостиковая контактная система с двумя разрывами цепи на каждый полюс, которая обеспечивает быстрое гашение дуги при отсутствии гибких связей. В качестве материала главных контактов применяется металлокерамика, а для вспомогательных – серебро или биметалл (медь, покрытая тонкой пластиной из серебра).

Система дугогашения состоит из последовательной катушки, сердечника, полюсных пластин и керамической камеры. В контакторах переменного тока широко применяются дугогасительные решетки.

Электромагнит. Широкое распространение получили эл.магниты

с Ш и П – образными магнитопроводами. Для амортизации удара якоря о неподвижный сердечник последний крепится к основанию с помощью пружин.

С целью устранения вибрации якоря во включенном положении на полюсах магнитной системы устанавливаются короткозамкнутые витки, которые наиболее эффективны при малом рабочем зазоре. Для плотного прилегания полюсов их поверхность должна шлифоваться.

Из-за изменения индуктивности катушки ток при притянутом якоре значительно меньше, чем при отпущенном. Индуктивное сопротивление катушки эл.магнита , если учесть, что , то .

.

15-кратного.

Эл.магниты контакторов переменного тока могут также питаться от сети постоянного тока.

В связи с большим пусковым током недопустима подача напряжения на катушку, если якорь по каким – либо причинам удерживается в отпущенном состоянии.

Относительно высокий коэффициент возврата Кв=0,6÷0,7 позволяет использовать контакторы переменного тока для защиты двигателей от снижения сетевого напряжения.

Срабатывание и отпускание эл.магнита переменного тока происходит значительно быстрее, чем эл.магнита постоянного тока. Собственное время срабатывания контакторов составляет 0,03÷0,05 с, а время отпускания 0,02 с.

При питании катушки от сети постоянного тока применяют специальную катушку с форсировочным резистором, который шунтирован размыкающим вспомогательным контактом контактора (рис.33).

2.-главный контакт;

3.- дугогасительная камера;

4.-токовая катушка дугогашения;

5.- изоляционная плита.

Контактор имеет вспомогательные 2 з и 2 р контакты, расположенные слева от главного контакта.

Рисунок 33. Конструкция контакторов однополюсных постоянного тока, на ток 2500 А, напряжением до 1000 В КП 7У3 – без отключающих пружин, КП 207У3- с отключающими пружинами.

Контакторы переменного тока выпускаются следующих типов: КТ6000/00, КТ6000/20, КТП6000/00, КТ6000/2, КТ64, КТП64, КТ65, КТП65, серии КТ (КТ7000Б, КТП7000Б, КТ6500, КТП6500, КТ7039), КТ7000, КНТ, серии МК, КМГ15, КМГ16, КМГ19, КМГ17-19, КМГ17Д19, КМГ18-19, КМГ18Д19, КТ6600, КТ6000Б, КТ6000А, КТП6000Б, КТ7100У, КТ7200У и другие.

Номинальное напряжение: главная цепь – 380, 660, 1140 В, втягивающая катушка –24, 36, 42, 110, 127, 220, 230, 240, 380, 400, 415, 500, 660 В.

Контакторы герсиконовые серии КМГ15, типов КМГ16, КМГ19,
КМГ17-19, КМГ17Д19, КМГ18-19, КМГ18Д19.

КМГ – контактор магнитоуправляемый герметичный. Основным элементом контакторов является герсикон – силовой геркон.

Количество полюсов – 1, 2, 3

Номинальные токи – 6,3; 10 А

Номинальное напряжение – переменный 380 В, постоянный 75 В.

Номинальное напряжение включающих катушек:

На постоянном токе – 12, 24, 48, 60, 10, 20 В;

На переменном – 110, 127, 220 В.

Контакторы серии МК. Предназначена для работы в силовых эл.цепях постоянного – 220, 440 В и переменного тока – 380, 500, 660 В.

Номинальный ток: главной цепи 40, 63, 100, 160 А; вспомогательных контактов 10А.

Контакторы с блоком бездуговой коммутации предназначены для работы в повторно-кратковременном и кратковременном режимах работы.

Конструкция контакторов моноблочная. Основные сборочные единицы: магнитная система, системы контактов главной и вспомогательной цепей. Контакторы с бездуговой коммутацией имеют полупроводниковый блок.

Магнитная система всех контакторов, за исключением МК1-10, МК2-10, двухкатушечная, катушки соединяются параллельно или последовательно в зависимости от напряжения цепи управления.

Системы контактов главной цепи конструктивно выполнены в виде одно-, двух- и трех- элементных блоков, мостикового типа.

Контакторы серии КТ6600 переменного тока 660 В с управлением переменным током 36-600 В, 66 серии. Номинальный ток 63, 100, 160 А.

Количество главных контактов 2, 3, 4, 5.

Конструкция контакторов моноблочная с поворотной системой. Контактор состоит из эл. магнита, контактно - дугогасительной системы и блока вспомогательной контактов.

Якорь эл.магнита – внедряющийся, на верхнем полюсе сердечника установлены экран.

Главные контакты (подвижные) пальцевого типа, контактные параметры регулируются. Используется эл.магнитное гашение дуги. Дугогасительные камеры – отдельные на каждый полюс. Для ограничения вылета дуги в камерах установлены пружинные пламегасители, а для ускорения гашения – потенциальный рог подвижного контакта.

Главные контакты выполнены с контактными накладками из металлокерамической композиции на основе серебра. Вспомогательные контакты – на основе серебра. Вспомогательные контакты – мостикового типа с контактной частью из серебра.

Контакторы серии КТ6000/00, КТП6000/00, КТ6000/20.

КТ – управление переменным током, КТП – постоянным током. Iн=16 А.

Наибольшая частота включений в час 600, а для КТ6000/20-60 в час.

После включения контакторов КТ6000/20 напряжения снимается, а подвижная система контактора удерживается во включенном положении защелкивающим механизмом.

Отключение контактора производится с помощью эл. магнита защелкивающего механизма при включении его на напряжение. После отключения контакторов напряжения с катушками эл.магнита защелки автоматически снимается.

Контакты выполняются из серебра.

Контакторы серий КТ6000/2, КТ6000/3.

2 – с замыкающими контактами и защелкой;

3 – с замыкающими и размыкающими контактами и защелкой.

Номинальный ток замыкающих контактов – 130, 250, 630, 1000 А. Замыкающих контактов – 1, 2, 3. Допустимая частота включений 60 в час.

Магнитная, контакто–дугогасительная система, контакты вспомогательной цепи установлены вдоль рейки и вала контактора.

Защелкивающий механизм контакторов устанавливается над магнитной системой. Контакторы имеют эл. магнитное дугогасительное устройство, состоящее из дугогасительной катушки, магнитопровода, рога неподвижного контакта и дугогасительной камеры с узкой щелью.

Замыкающие и размыкающие контакты выполнены с металлокерамическими накладками на основе серебра.

Контакторы серии КТ6000А, КТ6000Б, КТП6000Б, КТ7000Б.

Номинальный ток – 100, 160, 250, 400, 630 А.

Количество полюсов: 2, 3, 4, 5.

А – повышенная коммутационная способность – 500 тыс. циклов

Б – модернизированные.

Частота включений в час от 30 до 1200.

Контакторы выполняются с магнитной системой поворотного типа.

Главные контакты замыкающие пальцевого типа.

Контакторы типов КТ7100У, КТ7200У. Iн=63, 125 А.

У – унифицированные, для встройки в магнитные пускатели.

Конструкции моноблочного типа с поворотной подвижной системой.

Главные подвижные контакты пальцевого типа, контактные параметры регулируются. Используется эл.магнитное гашение дуги. Контактные накладки из металлокерамической композиции серебра. Вспомогательные контакты мостикового типа из серебра.

Контакторы типов КП7, КП207. Iн=2500 А, Uн=600 В.

Однополюсные. Контактор состоит из магнитной системы с двумя включающими катушками, контактной системой и дугогасительного устройства (рис.33). Контактная система имеет две пары параллельно включенных главных контактов и одну пару дугогасительных. Дугогасительная катушка включена последовательно с дугогасительными контактами, причем главные контакты в замкнутом состоянии шунтируют дугогасительные контакты. Главные контакты с серебряными накладками.

Контакторы вакуумные серии КТ12Р.

Р – рудничные. Iн=250, 400 А; Uн=600, 1140 В.

Частота включений в час, циклов ВО до 1200. предназначены для включения и отключения АД с К3 ротором, трансформаторов и т.д.

Три вакуумные дугогасительные камеры.

Полное перемещение якоря 9 мм.

Полупроводниковое дугогасительное устройство к контактору МК приведено на рис.35,а


Рисунок 35. Схемы полупроводниковых приставок к контакторам.

Главные контакты ГК шунтированы тиристорами VS1 и VS2, управление которыми осуществляется через диоды VD2 и VD3. Пусть в данный полупериод направление тока соответствует показанному на рис., то напряжение, приложенное между мостиком ГК и верхним неподвижным главным контактом, через VD2 открывает VS1, по которому начинает проходить ток цепи. После прохождения тока через нуль тиристор закрывается, и процесс отключения заканчивается.

Если ток имеет обратную полярность, то работают диод VD3 и тиристор VS2.

Для защиты управляющих переходов тиристоров от перенапряжений служат диоды VD1 и VD4.

RC цепочка снижает перенапряжение на тиристорах.

I-выводы для переднего присоединения проводников, II-то же для заднего

1- неподвижный контакт,

2- подвижный контакт

3- рог дугогасителя

4- рычаг, связанный с якорем

5- регулировочный винт

6- пружина подвижного контакта

7- регулировочная гайка

9,10- гибкое соединение

11- колодка

12- крепежная рейка

16- дугогасительная камера

17- пластина стальная (пламя-гасители)

Рисунок 34. Конструкция контактора переменного тока КТ 64-3У3 на ток 100 А, напряжение 380 В. (Модификация КТ 6000)

На рис.35,б показано полупроводниковое устройство контакторов КТ64, КТП64, КТ65, КТП65 (рис.34) для одной фазы. Параллельно ГК включается встречно-параллельно тиристоры VS1 и VS2. Управление осуществляется с трансформаторов тока ТТ, одетого на шину главного контакта. Во включенном состоянии контактора, ток проходит только по контактам, т.к. падение напряжения на них меньше порогового напряжения тиристоров.

При отключении контактора ток переходит в цепь тиристоров, находящихся во включенном состоянии под воздействием управления с ТТ. При этом дуга не образуется, так как падение на тиристорах не превышает 4÷5 В, что меньше, чем на дуге.

При перемене знака синусоидального тока управляющие импульса снимаются, а при первом переходе синусоиды тока через нуль тиристоры закрываются.

Имеются и обычные дугогасительные камеры, если устройство вышло из строя.

5.4 Магнитные пускатели.

Являются основным видом аппаратуры управления низковольтными (до 660 В) АД с К3 ротором. Для защиты их от перезагрузок недопустимой продолжительности и «потери фазы» в пускателе устанавливается эл.тепловые реле.

При включении АД Iп=(5÷6)Iн. При таком токе даже незначительная вибрация контактов быстро выводит их из строя. С целью уменьшения времени вибрации контакты и подвижные части пускатели делают возможно легче, уменьшается их скорость, увеличивается контактное нажатие.

При отключении двигателя восстанавливающиеся напряжение на контактах равно разности напряжения сети и эдс двигателя. В результате на контактах появляется напряжение, составляющее (15-20)% Uн, т.е. отключение происходит в облегченных условиях.

Пускателю в работе приходится отключать двигатель от сети сразу после пуска. В этих случаях он отключает ток равный 6Iн и восстанавливающемся напряжении, равным Uн сети.

По действующим нормам после 50-кратного включения и отключения заторможенного двигателя пускатель должен быть пригоден для дальнейшей работы.

Учитывая условия работы пускателя. В них используется мостиковая контактная система с двухкратным разрывом цепи, а это позволяет осуществлять бездуговую коммутация без применения дугогасительных устройств. Токоведущие шинки от зажимов к неподвижным контактам выполняется таким образом, что эл. динамические силы сдувают дугу с контактов.

Магнитная система включает в себя П или Ш – образный прямоходовой эл.магнит (рис.32). Контактное нажатие создается пружиной, упирающейся в траверсу.

1- неподвижные контакты;

2- подвижные контакты;

3- контактный мостик;

4- прижимная пружина;

5- деталь связи контактных мостиков;

6- траверса;

7- якорь электромагнита;

8- возвратная пружина;

9- катушка электромагнита;

10- корпус.

Рисунок 32. Типовая конструкция прямоходового магнитного пускателя.

Возврат пускателя в исходное положение происходит за счет пружины, расположенной внутри эл.магнита.

Для устранения вибрации якоря используют К3 витки.

Высокий коэффициент возврата эл.магнитов переменного ток позволяет защищать двигатель от понижения напряжения сети (эл. магнит отпускает при U=(0,6÷0,7)Uн).

Для реверсивных приводов используют два пускателя взаимосблокированных электрически либо механически.

Выпускаются магнитные пускатели серии ПМЛ, ПМА, ПМ12 и типа ПМА-0000, ПМУ.

В технических данных пускателей указываются их номинальный ток и номинальная мощность двигателя при различных напряжениях, а также категория применения.

В пускателях серии ПМА на токи от 40 до 160А и напряжении 380-660 В эл.магнит может быть как переменного, так и постоянного тока.

Пускатели комплектуются эл.тепловыми реле типа ТРП (однофазное), ТРН (двухфазное), РТТ и РТЛ (трехфазное). Реле ТРП, РТЛ имеют комбинированную систему нагрева. Возврат реле в исходное положение после срабатывания производится кнопкой.

Пускатели могут комплектоваться ограничителями перенапряжений типа ОПН (рис.37), которые должны ограничивать коммутационные перенапряжения на катушках управления. На дугогасительной камере могут встраиваться дополнительные приставки: контактные типа ПКЛ или пневмоприставки ПВЛ, кнопки «Пуск» или «Стоп» и сигнальная лампа.

а) на R-C элементной базе б) на варисторной в) на диодной

элементной базе элементной базе

Рисунок 37. Схемы электрические принципиальные включения ограничителей перенапряжений.

Эл.тепловые реле подсоединяются непосредственно к корпусам пускателей.

В пускателях в сейсмостойком исполнении последовательно и параллельно включающей катушки включается стабилитроны.

Пускатели серии ПМЛ. Могут быть выполнены с трехполюсными реле РТЛ и комплектоваться ОПН. Величина пускателя по Iн 1-10А, 2-25А, 3-40А,
4-63А. Могут иметь дополнительные приставки: ПКЛ, ПВЛ, кнопки «Пуск», «Стоп», сигнальные лампы.

Контакторы пускателей имеют прямоходовую магнитную систему Ш-образного типа.

Пускатели типа ПМА-0000 . Могут комплектоваться трехполюсными реле РТТ5-06, ОПН на R-C или варисторной элементной базе, кнопками управления и сигнальной лампой. Величина пускателя: 0- на 6,3А.

Пускатели имеют Ш-образную магнитную систему.

Пускатели серии ПМА. Предназначены для управления трехфазными АД с К3 ротором мощностью от 18,5 до 75 кВт. При наличии реле РТТ-2П, РТТ-3П или аппаратов позисторной защиты АЗП или УВТЗ-1М защищают двигатели от перегрузок недопустимой продолжительности.

Эл.тепловые реле с температурой компенсацией и ручным возвратом имеют диапазон регулирования тока несрабатывания (0,85-1,15)Iн.

Пускатели могут комплектоваться: ОПН, кнопками «Пуск», «Стоп», сигнальной лампой.

Величины пускателей: 3-40А; 4-63А; Д-80А; 5-100А; 6-160А. Номинальные напряжения включающих катушек переменного тока: 24-660 В; постоянного тока: 24-440 В.

Контакторы пускателей 3-й величины имеют прямоходовую Ш–образную магнитную систему.

Контакторы пускателей 4,5 и6-й величины имеют прямоходовую магнитную систему П–образного типа. В них вертикальное перемещение якоря с помощью Г–образного рычага преобразуется в горизонтальное перемещение траверсы, несущей подвижные главные контакты.

Пускатели серии ПМ12 . Могут комплектоваться: ОПН, реле РТТ-5, кнопками «Пуск», «Стоп», сигнальной лампой.

Обозначение номинального тока: 004-4А; 016-16А; 025-25А; 040-40А;
063-63А.

Контакторы пускателей имеют прямоходовую Ш–образную магнитную систему.

5.5 Тиристорный пускатель.

Один из вариантов схемы показан на рис.36.

ВВЕДЕНИЕ
В промышленности и мелкомоторном секторе, гражданском и коммерческом строительстве, задачи связанные с пуском и остановкой электродвигателей, а также с дистанционным управлением электрическими цепями возложены на контакторы и магнитные пускатели. Данные устройства применяются там, где необходимы частые пуски либо коммутация электрических устройств с большими токами нагрузки.
Для начала установим: чем это оборудование отличается друг от друга:
Контактор - это дистанционно управляемый коммутационный аппарат, позволяющий коммутировать мощные (в том числе индуктивные) нагрузки как переменного, так и постоянного тока.
Отличительной особенностью электромагнитных контакторов, по сравнению с близкими к ним электромагнитными реле является то, что контакторы разрывают электрическую цепь в нескольких точках одновременно, в то время как электромагнитные реле обычно разрывают цепь только в одной точке.
Контакторы – это аппараты дистанционного действия, предназначенные для частых включений и отключений силовых электрических цепей при нормальных режимах работы.
Электромагнитный контактор представляет собой электрический аппарат, предназначенный для коммутации силовых электрических цепей. Замыкание или размыкание контактов контактора осуществляется чаще всего с помощью электромагнитного привода.
Общепромышленные контакторы классифицируются:
· по роду тока главной цепи и цепи управления (включающей катушки) - постоянного, переменного, постоянного и переменного тока;
· по числу главных полюсов - от 1 до 5;
· по номинальному току главной цепи - от 1,5 до 4800 А;
· по номинальному напряжению главной цепи: от 27 до 2000 В постоянного тока; от 110 до 1600 В переменного тока частотой 50, 60, 500, 1000, 2400, 8000, 10 000 Гц;
· по номинальному напряжению включающей катушки: от 12 до 440 В постоянного тока, от 12 до 660 В переменного тока частотой 50 Гц, от 24 до 660 В переменного тока частотой 60 Гц;
· по наличию вспомогательных контактов - с контактами, без контактов.
Контакторы также различаются по роду присоединения проводников главной цепи и цепи управления, способу монтажа, виду присоединения внешних проводников и т.п.
На сегодняшний день существует огромный выбор контакторов и пускателей всех типов для всех возможных видов электроустановок.
Контакторы КМ – модульные контакторы, применяемые в основном в системах управления и автоматизации жилых, офисных, промышленных и прочих помещениях для управления и коммутации осветительных, обогревательных и вентиляционных и прочих инженерных систем. Применяются в сетях с напряжением до 380В переменного тока частотой 50Гц. Главные достоинства контактора КМ – малошумная коммутация, высокая коммутационная мощность и долговечность, свободный от фона переменного тока магнитный привод.
Контакторы серии КМЭ – малогабаритные контакторы, предназначенные для дистанционного пуска, остановки и реверсирования трехфазных асинхронных двигателей с короткозамкнутым ротором в сетях переменного тока частотой 50/60Гц с напряжением до 660В (категория применения АС-3) и для дистанционного управления электрическими цепями в которых ток включения равен номинальному току нагрузки (категория АС-1).

Контакторы этой серии отличают: компактные размеры, широкий ассортимент исполнений и катушек управления, большой выбор дополнительных устройств и возможность реализации реверсивного варианта управления, простота в обслуживании и эффективность работы.
Контакторы серии КТЭ – также используются для использования в схемах управления трехфазных асинхронных электродвигателей с короткозамкнутым ротором в сетях с напряжением до 660В. Могут использоваться для включения и отключения таких систем как: нагревательных установок, освещения, насосных систем, печей, вентиляции и т.д. В ассортименте компании как одиночные нереверсивные контакторы, так и блочные реверсивные контакторы.

реверсивный контактор нереверсивный контактор


Контакторы КТ-6000
Применяются для включения и отключения приемников электрической энергии с номинальным напряжением до 660В переменного тока частотой 50Гц. Сфера применения – включение мощных электрических машин в аппаратуре автоматического включения резерва (АВР). Изготавливаются только в открытом исполнении с естественным воздушным охлаждением. Выпускаются в трехполюсном исполнении на номинальные токи от 100 до 630А, категория применения АС3.

НАЗНАЧЕНИЕ контактора
Контакторы бывают трех видов: постоянного тока, контакторы переменного тока и контакторы постоянно-переменного тока.
Контакторы постоянного тока предназначены для коммутации цепей постоянного тока и, как правило, приводятся в действие электромагнитом постоянного тока.
Контакторы постоянного тока применяются для включения и отключения приемников электрической энергии в цепях постоянного тока; в электромагнитных приводах высоковольтных выключателей; в устройствах автоматического повторного включения.
Контакторы постоянного тока выпускаются в основном на напряжение 22 и 440 В., токи до 630 А., однополюсные и двухполюсные.
Контакторы переменного тока применяются для управления асинхронными трехфазными двигателями с короткозамкнутым ротором, для выведения пусковых резисторов, включения трехфазных трансформаторов, нагревательных устройств, тормозных электромагнитов и других электротехнических устройств.
Контакторы переменного тока предназначены для коммутации цепей переменного тока. Электромагниты этих цепей могут быть как переменного, так и постоянного тока.

КОНСТРУКЦИЯ контактора
Схема контактора постоянного тока представлена на рис. 330.


Контактор состоит из следующих основных узлов: главных контактов, дугогасительной системы, электромагнитной системы, вспомогательных контактов.
Конструктивно контакторы состоят из электромагнитной системы, состоящей из сердечника? (электромагнита, магнитопровода) (7), якоря (8), катушки (3) и крепежных деталей (1,2); системы главных контактов (4,5); дугогасительной системы (токоведущая связь (6).
Дугогасительная система обеспечивает гашение электрической дуги, возникающей при размыкании главных контактов.
Главные контакты осуществляют замыкание и размыкание силовой цепи. Они должны быть рассчитаны на длительное проведение номинального тока и на производство большого числа включений и отключений при большой их частоте. Нормальным считают положение контактов, когда втягивающая катушка контактора не обтекается током и освобождены все имеющиеся механические защелки. Главные контакты могут выполняться рычажного и мостикового типа. Рычажные контакты предполагают поворотную подвижную систему, мостиковые – прямоходовую.
Дугогасительные камеры контакторов постоянного тока построены на принципе гашения электрической дуги поперечным магнитным полем в камерах с продольными щелями. Магнитное поле в подавляющем большинстве конструкций возбуждается последовательно включенной с контактами дугогасительной катушкой.
Дугогасительная система обеспечивает гашение электрической дуги, которая возникает при размыкании главных контактов. Способы гашения дуги и конструкции дугогасительных систем определяются родом тока главной цепи и режимом работы контактора.
Электромагнитная система контактора обеспечивает дистанционное управление контактором, т. е. включение и отключение. Конструкция системы определяется родом тока и цепи управления контактора и его кинематической схемой.
Электромагнитная система контактора может рассчитываться на включение якоря и удержание его в замкнутом положении или только на включение якоря. Удержание же его в замкнутом положении в этом случае осуществляется защелкой.
Отключение контактора происходит после обесточивания катушки под действием отключающей пружины, или собственного веса подвижной системы, но чаще пружины.
Вспомогательные контакты. Производят переключения в цепях управления контактора, а также в цепях блокировки и сигнализации. Они рассчитаны на длительное проведение тока не более 20 А, и отключение тока не более 5 А. Контакты выполняются как замыкающие, так и размыкающие, в подавляющем большинстве случаев мостикового типа.
Контакторы переменного тока выполняются с дугогасительными камерами с деионной решеткой. При возникновении дуга движется на решетку, разбивается на ряд мелких дуг и в момент перехода тока через ноль гаснет.


Электрические схемы контакторов, состоящие из функциональных токопроводящих элементов (катушки управления, главных и вспомогательных контактов), в большинстве случаев имеют стандартный вид и отличаются лишь количеством и видом контактов и катушек.
Важными параметрами контактора являются номинальные рабочие ток и напряжения.
Номинальный ток контактора - это ток, который определяется условиями нагрева главной цепи при отсутствии включения или отключения контактора. Причем, контактор способен выдержать этот ток три замкнутых главных контактах в течение 8 часов, а превышение температуры различных его частей не должно быть больше допустимой величины.
При повторно-кратковременном режиме работы аппарата часто пользуются понятием допустимого эквивалентного тока длительного режима.

ПРИНЦИП ДЕЙСТВИЯ контактора
Принцип работы контактора: на катушку управления подается напряжение, якорь притягивается к сердечнику и контактная группа замыкается или размыкается в зависимости от исходного состояния каждого из контактов. При отключении происходят обратные действия.
Магнитный пускатель - это модифицированный контактор. В отличие от контактора, магнитный пускатель комплектуется дополнительным оборудованием: тепловым реле, дополнительной контактной группой или автоматом для пуска электродвигателя.
Пускатель электромагнитный (магнитный пускатель) - это низковольтное электромагнитное (электромеханическое) комбинированное устройство распределения и управления для пуска и разгона электродвигателя до номинальной скорости, обеспечения его непрерывной работы, отключения питания и защиты электродвигателя и подключенных цепей от рабочих перегрузок.

КОНСТРУКЦИЯ МП
Пускатель представляет собой контактор, комплектованный дополнительным оборудованием: тепловым реле, дополнительной контактной группой или автоматом для пуска электродвигателя, плавкими предохранителями.


Помимо простого включения, в случае управления электродвигателем пускатель может выполнять функцию переключения направления вращения его ротора (т. н. реверсивная схема), путем изменения порядка следования фаз для чего в пускатель встраивается второй контактор.переключения обмоток трехфазного двигателя со «звезды» на «треугольник» производится для уменьшения пускового тока двигателя.
Исполнение магнитных пускателей может быть открытым и защищенным (в корпусе); реверсивным и нереверсивным; с встроенной тепловой защитой электродвигателя от перегрузки и без нее.
Реверсивный магнитный пускатель представляет собой два трёхполюсных контактора, укреплённых на общем основании и сблокированных механической или электрической блокировкой, исключающей возможность одновременного включения контакторов.

НАЗНАЧЕНИЕ МП
Магнитные пускатели предназначены для применения в стационарных установках для дистанционного пуска непосредственным подключением к сети, остановки и реверсирования трехфазных асинхронных электродвигателей с короткозамкнутым ротором при напряжении до 660В и номинальном токе частотой 50 и 60 Гц. При наличии тепловых реле пускатели осуществляют защиту управляемых электродвигателей от перегрузки недопустимой продолжительности и от токов, возникающих при обрыве одной из фаз. Пускатели, комплектуемые ограничителями перенапряжений, пригодны для работы в системах управления с применением микропроцессорной техники.
Наиболее распространенные серии пускателей с контактной системой и электромагнитным приводом: ПМЕ, ПМА, ПА, ПВН, ПМЛ, ПВ, ПАЕ, ПМ12.

ПРИНЦИП РАБОТЫ МП
Принцип действия нереверсивного магнитного пускателя (рис. 1) заключается в следующем: при включении пускателя по катушке проходит электрический ток, сердечник намагничивается и притягивает якорь, при этом главные контакты замыкаются, по главной цепи протекает ток. При отключении пускателя катушка обесточивается, под действием возвратной пружины якорь возвращается в исходное положение, главные контакты размыкаются.
При отключении магнитного пускателя вследствие перебоев в электроснабжении размыкаются все его контакты, в том числе и вспомогательные.

Рис. 1. С
хема включения нереверсивного магнитного пускателя: а - монтажная схема включения пускателя, электрическая принципиальная схема включения пускателя
Принцип действия схем включения реверсивного магнитного пускателя: (рис. 2)
Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.
В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Рис. 2. Схемы включения реверсивного магнитного пускателя
Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.
Электрическая схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рис. 2, б.
В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2.
Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

Возможные неисправности и способы их устранения

Разновременность замыкания и состояние главных контактов
Разновременность замыкания главных контактов можно устранить затяжкой хомутика, держащего главные контакты на валу. При наличии на контактах следов окисления, наплывов или застывших капель металла, контакты надо зачистить.
Сильное гудение магнитной системы электромагнитного пускателя
Сильное гудение магнитной системы может привести к выходу из строя катушек пускателя. При нормальной работе пускатель издает лишь слабый шум. Сильное гудение пускателя свидетельствует о его неисправности.
Для устранения гудения пускатель надо отключить и проверить:
а) затяжку винтов, крепящих якорь и сердечник,
б) не поврежден ли короткозамкнутый виток, уложенный в прорезы сердечника. Так как через катушку протекает переменный ток, то и магнитный поток изменяет свое направление и в какие то моменты времени становится равным нулю. В этом случае противодействующая пружина будет отрывать якорь от сердечника и возникнет дребезг якоря. Короткозамкнутый виток устраняет это явление.
в) гладкость поверхности соприкосновения обеих половин электромагнитной системы пускателя и точность пригонки их, так как в электромагнитных пускателях ток в обмотке сильно зависит от положения якоря. При наличии зазора между якорем и сердечником ток, проходящий через катушку больше номинального.
Для проверки точности соприкосновения между якорем и сердечником электромагнитного пускателя между ними можно подложить листок копировальной бумаги и листок тонкой белой бумаги и замкнуть пускатель от руки. Поверхность соприкосновения должна быть не менее 70% сечения магнитопровода. При меньшей поверхности соприкосновения этот дефект можно устранить правильной установкой сердечника электромагнитной системы пускателя. Если же образовался общий зазор, то необходимо шабровать поверхность вдоль слоев листовой стали магнитной системы.
Отсутствие реверса в реверсивных магнитных пускателях
Отсутствие реверса в реверсивных пускателях можно устранить подгонкой тяг механической блокировки
Прилипание якоря к сердечнику происходит в результате отсутствия немагнитной прокладки или недостаточной ее толщины. Пускатель может не отключиться даже при полном снятии напряжения с катушки. Необходимо проверить наличие и толщину немагнитной прокладки или воздушный зазор.
Необходимо проверить состояние блокировочных контактов пускателя. Контакты во включенном положении должны плотно прилегать друг к другу и включаться одновременно с главными контактами пускателя. Зазоры блок-контактов (кратчайшее расстояние между разомкнутым подвижным и неподвижным контактом) не должны превышать допустимых значений. Необходимо произвести регулировку блок-контактов пускателя. Если провал блок-контакта становится меньше 2 мм, то блок-контакты надо заменить.
Своевременные испытания и регулировка электромагнитных пускателей позволяют заблаговременно избежать неполадок и повреждений.
Характерные неисправности магнитных пускателей, вероятные причины, вызывающие эти неисправности, и методы их устранения приведены в таблице:

Признаки неисправности

Вероятная причина

Метод управления

I. Пускатель не включается

Повреждена катушка контактора (коммутирующего пускателя у ПВИ-32) Сгорела плавкая вставка предохранителя в цепи управления

Сработала максимальная токовая защита. Горит сигнальная лампа с красным светофильтром

Силовые контакты контактора касаются стенок дугогасительных камер (кроме ПВВ-320)

Неисправна кнопка «Пуск»

поста управления

Пробит диод в кнопочном

посту управления

Повреждены провода уп-

равления (обрыв, корот-

кое замыкание), увеличе-

ние сопротивления цепи

управления свыше 20 Ом

Снижение сопротивления

изоляции между жилами

дистанционного управления ниже 300 Ом (кабель пережат)

Неисправность в блоке управления

Заменить катушку

Заменить предохранитель

Определить и устранить причину срабатывания защиты

Отрегулировать положение подвижных контактов

Проверить кнопку и устранить неисправность

Заменить диод

Перейти на исправные жилы кабеля или заменить кабель Измерить сопротивление цепи управления, зачистить контакты и подтянуть крепежные элементы в местах электрических соединений, в случае необходимости заменить кабель

Измерить сопротивление изоляции между жилами и в случае необходимости заменить кабель

Неисправный блок заменить на резервный

2. Пускатель включается, но не остается включенным при отпускании кнопки «Пуск»

Нет цепи, шунтирующей зажимы кнопки «Пуск» Неисправность блока БДУ

Проверить наличие цепи и устранить неисправность. Заменить блок

3. При нажатии кнопки БРУ или БКИ не горит сигнальная лампа

Нарушение цепи в кнопке «Проверка БРУ» или «Проверка БКИ». Сгорела сигнальная лампа. Неисправность внутри блока

Проверить цепь кнопки и устранить неисправность. Заменить лампу. Заменить блок управления

4. Не включается автоматический выключатель (только для ПВИ-32)

Неисправен автоматический выключатель

Заменить автоматический

выключатель

5. Пускатель включается и сразу же отключается под действием максимальной токовой защиты, загорается сигнальная лампа с красным светофильтром

Короткое замыкание в защищаемой силовой цепи Несоответствие установки максимальной токовой защиты пусковому току. Неисправность блока защиты УМЗ или ПМЗ

Определить место короткого замыкания и устранить повреждение. Проверить установку защиты и привести ее в соответствие с пусковым током. Заменить блок.

6. При срабатывании максимальной токовой защиты или защиты от перегрузки не загорается сигнальная лампа

Сгорела сигнальная лампа

Заменить лампу

7. Пускатель самопроизвольно отключается, повторное включение невозможно

Обрыв или увеличение сопротивления цепи дистанционного отключения свыше 100 Ом или снижение сопротивления изоляции между жилами управления (кабель пережат) Увеличение сопротивления цепи заземления свыше 50 Ом (для пускателей ПВ-1140-250)

Измерить сопротивление цепи управления, зачистить контакты и подтянуть крепления в местах электрических соединений. В случае необходимости перейти на ре- зервные жилы или заменить кабель

8. Пускатель сильно гудит

Якорь контактора неплотно прилегает к сердечнику вследствие: загрязнения повреждения перекоса плохого закрепления якоря и сердечника большого нажатия контактов повреждения на короткозамкнутом витке низкого напряжения сети

Удалить смазку и пыль. Устранить повреждения. Устранить перекос. Закрепить якорь и сердечник. Отрегулировать нажатие силовых контактов.Заменить виток. Проверить напряжение сети и привести в соответствие с нормами

9. Чрезмерный нагрев контактов силовой цепи

Недостаточное усилие нажатия контактов

Чрезмерный износ контактов

Отрегулировать нажатие контактов Проверить износ контактов и при необходимости заменить новыми

10. Чрезмерный нагрев всего пускателя

Токоприемник не соответствует пускателю

Плохо затянуты винты, гайки, крепящие токоведущие части

Заменить пускатель в соответствии с нагрузкой токоприемника Подтянуть крепежные элементы

11. Нет напряжения 36 В в цепи питания светильника местного освещения (системы автоматики)

Сгорел предохранитель в цепи освещения (автоматики) вторичной обмотки понижающего трансформатора пускателя

Заменить предохранитель

12. При включении пускателя

привариваются силовые

контакты контактора

Неисправность в системе форсировки включения контактора Чрезмерное или ослабленное нажатие силовых контактов Низкое напряжение в сети в момент замыкания силовых контактов контактора

(для пускателей ПВИ-1140)

Отрегулировать нажатие контактов. Замерить напряжение и принять меры к обеспечению нормируемой величины напряжения на за жимах пускателя Проверить работу системы форсировки включе ния контактора

Техническое обслуживание и ремонт электромагнитных пускателей
Для предотвращения быстрого износа и отказов, поддержания в постоянной готовности к использованию по назначению, обеспечения безопасной работы проводится техническое обслуживание (ТО) пускателей. Виды и регламенты технического обслуживания и испытаний определены Правилами безопасности (ПБ) и Положением о планово-предупредительной системе технического обслуживания и ремонта оборудования промышленных предприятий (Положение о ППР). Пуска в процессе эксплуатации должны периодически осматриваться:
а) лицами, работающими на технологических машинах, а также
дежурными электрослесарями, электромонтерами участка - ежесменно;
б) механиками участков или лицами, их замещающими - еженедельно;
в) главным энергетиком (главным механиком) или назначенными им лицами
- не реже 1 раза в 3 мес.
Ежесменный осмотр производят в начале каждой смены без вскрытия оболочки пускателя. При этом проверяют следующее:
1. Место установки пускателя, где должно быть исключено возможное
обрушение кровли, повреждение транспортными средствами, попадание воды. Пускатель должен быть собран и укомплектован в соответствии с инструкцией завода-изготовителя.
2. Чистоту наружных поверхностей пускателя, т. е. отсутствие на них
угольной пыли и другого горючего материала.
3. Целость оболочки. Взрывобезопасная оболочка не должна иметь трещин,
прожогов, отверстий, неисправных защитных стекол и других повреждений.
4. Наличие крепежных гаек и болтов, их затяжку. Гайки и болты должны быть полностью затянуты так, чтобы фланцы крыш и корпуса взрывобезопасной оболочки плотно прилегали по всему периметру. Запрещается эксплуатация пускателя при отсутствии или недостаточной затяжке хотя бы одного болта или гайки.
5. Исправность вводных устройств, наличие элементов уплотнения и крепления кабеля. Кабель не должен проворачиваться или перемещаться в осевом направлении. Ослабленные болты или гайки, предназначенные для уплотнения резинового кольца и закрепления кабеля от выдергивания, необходимо подтянуть.
6. Отсутствие не закрытых взрывонепроницаемой заглушкой кабельных вводов пускателя, которые не используются в работе.
7. Исправность устройств для облегчения открывания крышки и наличие специальных ключей к ним.
8. Наличие пломб на пускателях и надписей, указывающих включаемую технологическую машину, величину установки тока максимальной токовой защиты и максимальной токовой защиты от перегрузки.
9.Ширину щели (зазора) в плоских соединениях между наружными частями оболочки, подвергавшейся вскрытию, при нормальной затяжке крепежных болтов.
Ежеквартальную ревизию проводят с открыванием крышек взрывобезопасной оболочки, разборкой вводов (в случае необходимости), осмотром всех электрических элементов пускателя и выполнением необходимого технического ремонта. Перед ревизией следует: посредством ближайшего выключателя снять напряжение с подвергающегося ревизии пускателя и на его рукоятке повесить плакат «Не включать, работают люди»; открыть крышку вводного отделения пускателя и убедиться в отсутствии напряжения.
10. Чистоту внутренних поверхностей оболочки. Для этого открывают все крышки оболочки и, если надо, очищают поверхность и установленные элементы пускателя от влаги и пыли. Ввод коробки снимают в случае необходимости.
11. Состояние взрывозащитных поверхностей. При наличии загрязнений очищают поверхность ветошью от смазки и пыли, шлифовальной шкуркой - от ржавчины.
12. Наличие и состояние эластичных уплотняющих прокладок (если предусмотрено конструкцией пускателя). Смятые или разорванные прокладки должны быть заменены.
13. Качество уплотнений гибких и бронированных кабелей при сухой заделке последних.
14. Исправность охранных колец для головок крепежных болтов и гаек.
15. Качество затяжки присоединенных кабельных жил к зажимам и состояние этих зажимов. Ослабленные гайки или болты подтягивают, изоляционные втулки, имеющие сколы или трещины, заменяют.
16. Состояние монтажа внутренней проводки и элементов пускателя: гайки и болты на зажимах подтягивают, поврежденные места изоляции проводников изолируют, а в случае необходимости проводник заменяют.
17. Исправность механической блокировки крышки, которая должна работать четко и надежно.
18. Состояние смотровых окон. Окна проверяют без разборки, обращая внимание на целость стекол и отметку «В», наличие на них крепежных элементов и их затяжку.
В условиях напряженной работы предприятий ремонт электрооборудования должен выполняться в предельно сжатые сроки, что возможно при высоком уровне организации ремонтных работ. Поскольку пока не полностью удовлетворяются потребности предприятий в трансформаторах, электрических машинах и аппаратах, своевременный и качественный ремонт этого электрооборудования стал одним из основных факторов, обеспечивающих нормальную работу предприятий.
В процессе ремонта возможны модернизация электрооборудования, изменение в нужном направлении его технических характеристик, повышение экономичности работы. Многолетняя практика работы электроремонтных цехов предприятий и электроремонтных заводов показала, что свыше 70% поступающего в ремонт поврежденного электрооборудования составляют трансформаторы, электрические машины и коммутационные аппараты, в ремонте которых значительное место занимают электрослесарные работы.
В своей работе я рассмотрел вопросы технического обслуживания и ремонта магнитных пускателей
Техническое обслуживание
В период между ремонтами проводится техническое обслуживание электроустройств, которое представляет собой комплекс операций или операцию по поддержанию работоспособности или исправности устройства при пользовании по назначению, ожидании, хранении и транспортировании. Устройство при этом не разбирается.
В типовой объем работ по техническому обслуживанию магнитных пускателей входят: очистка от пыли и грязи, смазка трущихся частей, ликвидация видимых повреждений, затяжка крепежных деталей, очистка контактов от грязи и наплывов, проверка исправности кожухов, оболочек, корпусов, проверка работы сигнальных и заземляющих устройств.
Ремонтные работы
В результате эксплуатации, аварий, перегрузок и естественного износа часть электрооборудования и сетей выходит из строя и подлежит ремонту.
Ремонт - это комплекс операций по восстановлению исправности или работоспособности электротехнических устройств, восстановлению их ресурсов или их составных частей. Под операцией ремонта понимают законченную часть ремонта, выполняемую на одном рабочем месте исполнителями определенной специальности, например: очистка, разборка, сварка, изготовление обмоток и т.д.
В электрических аппаратах чаще всего повреждаются подвижные, неподвижные и дугогасительные контакты. Ремонт в основном заключается в определении неисправности, устранении ее, замене поврежденных и изношенных деталей с последующей регулировкой и испытанием. При эксплуатации контакты очищают от нагара металла, копоти, окислов. Очищают напильником с тонкой (мелкой) насечкой. Устраняют сильный и слабый нажим контактов. Для этого между контактами помещают бумагу (фольгу), оттягивая подвижные контакты через динамометр, вытягивают фольгу. Нормальное усилие 0,5-0,7кГ. Магнитная система контактов может создавать шум, гудение, причины этого: неплотно прилегает якорь к сердечнику, повреждение короткозамкнутого витка, очень большое натяжение контактов, якорь перекошен по отношению к сердечнику, в местах прикосновения якоря и сердечника имеется ржавчина, у магнитных пускателей и контакторов нельзя допускать разновременности замыкания силовых контактов.
Короткозамкнутые витки у контакторов и магнитных пускателей выполняются из меди, латуни и алюминия. Они укладываются в штампованные пазы на концах сердечника. Обращается внимание на дугогасительные камеры. Отсутствие их может вызвать перекрытие дугой отдельных фаз. Катушки ремонтируют при повреждении каркаса, обрывах, витковых замыканиях и полном сгорании. Обрыв в катушке определяется, если не развивается тяговое усилие и не потребляется ток. Витковое замыкание обнаруживается по ненормальному нагреву и уменьшению тяги.
У контакторов чаще меняют главные контакты, гибкие соединения, дугогасительные камеры, катушки, пружины, короткозамкнутые витки. Сопротивление изоляции обмоток не должно превышать 0,5 МОм. У реле чаще перегорают нагревательные элементы. Для нагревательных элементов применяют нихром, фехраль. Отдельные нагревательные элементы изготавливают методом штамповки. Спиральные нагревательные элементы кадмируют для предохранения от окисления. На рисунке 6 показан контактор магнитного пускателя.
Ремонт контактов. Загрязнения, износ, обгорание, копоть или окисления, наплывы и брызги металла на поверхности подвижных (включая и ножи рубильников) или неподвижных (губки ножей) контактов, а также на пластинах и контактных мостиках устраняются хлопчатобумажной салфеткой, смоченной в бензине, или надфилем.
При изломе или ослаблении контактных пружин, повреждениях антикоррозийного покрытия, пружины заменяют.
Ремонт катушек электромагнитов. Катушки бывают каркасными и бескаркасными. Наиболее часто встречающееся повреждение - трещины длиной до 15мм в каркасе. Их устраняют следующим образом. Поверхность каркаса вокруг трещины очищают от пыли и масла хлопчатобумажной салфеткой, смоченной в бензине.
При повреждении наружного слоя изоляции катушки или обрыве обмоточного провода в верхних слоях обмотки снимают наружную изоляцию обмотки и поврежденные витки до места повреждения или обрыва, припаивают, изолируют место пайки нового обмоточного провода и доматывают требуемое количество витков, повторив операции, которые выполняются при намотке новых катушек.
При значительных повреждениях каркаса, междувитковых замыканиях, обгорании изоляции обмотки на большую глубину катушка должна быть заменена новой.
Ремонт каркасных катушек. Подбирают необходимый для катушки каркас и провод, параметры которого должны соответствовать паспортным данным. Перед установкой на намоточный станок каркас следует обернуть двойным слоем электроизоляционной бумаги толщиной 0,02-0,03мм и конец ее приклеить к каркасу. При намотке необходимо следить за тем, чтобы натяжение провода не было чрезмерным, это может вызвать обрыв провода. Провод при намотке должен ложиться ровным плотным слоем. Между 1-м и 2-м слоями обмотки укладывают межслоевую изоляцию из изоляционной бумаги. Если катушка нагревостойкая, то для межслоевой изоляции используют тонкую стеклоткань.
Ремонт магнитопровода. Загрязнения удаляют хлопчатобумажной салфеткой, смоченной в бензине; следы коррозии тщательно зачищают стальной щеткой и шлифовальной шкуркой; наклеп на поверхностях соприкосновения сердечника и ярма удаляют шлифовкой поверхности напильником на шлифовальном станке.

Техника безопасности при эксплуатации
Электрические установки и устройства должны быть в полной исправности, для чего в соответствии с правилами эксплуатации их нужно периодически проверять. Нетокопроводящие части, которые могут оказаться под напряжением в результате пробоя изоляции, должны быть надежно заземлены.
Запрещается проводить работы или испытания электрического оборудования и аппаратуры, находящихся под напряжением, при отсутствии или неисправности защитных средств, блокировки ограждений или заземляющих цепей. Для местного переносного освещения должны применяться специальные светильники с лампами на напряжение 12 В.
Пользоваться неисправным или непроверенным электроинструментом (электродрелями, паяльниками, сварочным и другими трансформаторами) запрещается. В помещениях с повышенной опасностью поражения электрическим током (сырые, с токопроводящими полами, пыльные) работы должны выполняться с особыми предосторожностями. Большое значение уделяется защитным средствам.
Отключение токоведущих частей. Отключают оборудование, которое требует ремонта, и те токоведущие части, к которым можно случайно прикоснуться или приблизиться на опасное расстояние. Отключенный участок должен иметь видимые разрывы с каждой стороны токоведущих частей, на которые может быть подано напряжение.
Видимые разрывы обеспечивают отключенными разъединителями, выключателями нагрузки, рубильниками, снятыми предохранителями, отсоединенными перемычками или частями ошиновки.
При отключении напряжения необходимо выполнять меры безопасности (например, плавкие предохранители снимают с помощью изолированных клещей в диэлектрических перчатках и защитных очках).
Вывешивание запрещающих плакатов и ограждение не отключенных токоведущих частей. На отключенных коммутационных аппаратах вывешивают плакаты: «Не включать - работают люди!», «Не включать - работа на линии!», «Не открывать - работают люди!» (на приводах вентилей подачи воздуха); при необходимости на не отключенных токоведущих частях устанавливают ограждения.
Проверка отсутствия напряжения. Сначала снимают постоянные ограждения. Подключают переносное заземление к металлической шине, соединенной с заземляющим устройством. Указателем напряжения проверяют отсутствие напряжения, но перед этим необходимо обязательно проконтролировать его исправность, приблизив щуп (контакт-электрод) к находящейся под напряжением токоведущей части на расстояние, достаточное для появления свечения лампы (светодиода). Если она начинает светиться, значит, указатель исправен.
Исправным указателем проверяют отсутствие напряжения между фазами, между каждой фазой и землей, между фазами и нулевым проводом. Если указатель покажет напряжение на токоведущей части, необходимо установить на место снятые ограждения и найти причину появления напряжения. Делать заключение об отсутствии на установке напряжения по показаниям сигнальных ламп, вольтметра нельзя, так как они являются только дополнительными средствами контроля.
Наложение и снятие заземления. После проверки отсутствия напряжения, отключенные части немедленно заземляют с помощью переносного заземления, один конец которого уже был соединен с заземляющим устройством. При этом зажимы переносного заземления накладывают на отключенные токоведущие части сначала с помощью изолирующей штанги, а затем уже закрепляют эти зажимы штангой или вручную. Снимают заземление (после окончания работ) в обратном порядке: сначала с токоведущих частей, а затем с заземляющей шины с помощью изолирующей штанги. Все работы выполняют в диэлектрических перчатках.
Ограждение рабочего места и вывешивание плакатов безопасности. Вдоль пути от входа в электроустановку до места ремонтных работ устанавливают временные ограждения или переносные щиты, на которых (а также на постоянных ограждениях соседних ячеек) вывешивают предупреждающие плакаты («Стой - напряжение»), на месте работ - предписывающие плакаты («Работать здесь», «Влезать здесь»).
Работы в электроустановках должен выполнять обученный персонал, имеющий квалификационные группы электробезопасности (I-V), а технические мероприятия - оперативный персонал (один из них должен иметь квалификационную группу не ниже IV).
Организационные мероприятия при подготовке рабочего места и в период выполнения ремонтных работ включают: оформление наряда-допуска (наряда) или распоряжения; допуск к работе; надзор во время работы; занесение в журнал записей о перерывах в работе, переходов на другое рабочее место, об окончании работы.
Наряд-допуск (наряд) - составленное на специальном бланке распоряжение на безопасное проведение работы, определяющее ее содержание, место, время начала и окончания, необходимые меры безопасности, состав бригады и лиц, ответственных за безопасное выполнение работы.
Работающие отвечают за выполнение ими правил безопасности и указаний, полученных при допуске к работе и во время работы.

Список используемой литературы
1. ГОСТ Р 50030.4.1-2002 (МЭК 60947-4-1-2000) Аппаратура распределения и управления низковольтная. Часть 4-1. Контакторы и пускатели.
2. ГОСТ 2491-82 «Пускатели электромагнитные низковольтные. Общие технические условия».
3. Рожкова Л.Д., Козулин В.С. Электрооборудование станций и подстанций: учебник для техникумов.-М.:Энергоатомиздат, 1987.
4. Сибикин М.Ю. Техническое обслуживание, ремонт электрооборудования и сетей промышленных предприятий. – ПрофОбрИздат, 2001.

Основное предназначение контакторов и магнитных пускателей – управление электромоторами и замыкание силовых цепей с большими токами. Принцип действия аппаратов идентичный. Различие состоит в том, что магнитный пускатель представляет собой тот же контактор или два, собранных в устройство с защитными функциями, возможностью блокирования, цепями сигнализации.

Устройство контактора

Контактор – электромагнитный аппарат, позволяющий коммутировать силовые электроцепи через управляющий ток малых значений, который питает катушку соленоида устройства.

Работа контактора основана на явлении притяжения якоря электромагнита к сердечнику во время протекания тока. Сочлененная рычажная система прикреплена к якорю. Электрические контакты отделены от рычага изоляцией. Подвижные контакты прижимаются к неподвижным, замыкая электроцепь рабочего тока. Аппарат включен до тех пор, пока катушка находится под напряжением.

В зависимости от типа тока, контакторы делятся на:

  • переменного тока;
  • постоянного тока.

По количеству полюсов аппараты бывают:

  • однополярные;
  • двухполярные;
  • трех,- и четырехполюсные.

Все устройства состоят из магнитной системы и набора контактов: рабочих и вспомогательных.

Магнитная система

Составными частями магнитной системы являются:

  1. Катушка электромагнита;
  2. Сердечник, на котором установлена катушка;
  3. Якорь, подвижная арматура из железных пластин.

Когда катушка оказывается под напряжением, протекающим через нее током создается магнитный поток, который замыкается по окружности через сердечник, якорь, воздушный зазор и арматуру. Он вызывает притяжение якоря к сердечнику. Как только ток прекращается, пружины возвращают якорь в первоначальное положение. В первый момент после включения контактора относительно большой ток течет через катушку, а затем его значение уменьшается, когда якорь приходит в полное соприкосновение с сердечником.

Важно! Для надежной работы контактора важно обеспечить правильную регулировку и сборку магнитной системы. Ослабленный крепеж элементов оказывает влияние на формирование вибраций.

В небольших контакторах (до 15 А) плотное соединение между якорем и сердечником иногда может вызвать «приклеивание» якоря из-за остаточного магнетизма. Чтобы это предотвратить, в некоторых аппаратах делают тонкую вставку из меди или латуни. В более крупных контакторах явление магнитного «прилипания» встречается редко, так как действуют мощные пружины.

Контактная система

  1. Фиксированные контакты устанавливаются на жестком основании, встроенном в изоляцию;
  2. Подвижные контакты прикреплены к мобильным основаниям, снабжены сильными пружинами и соединены с якорем электромагнита через шарнирный рычаг.

Важно! Хорошее сцепление контактных поверхностей – одно из основных условий эффективной работы аппаратов.

Медные контакты очень быстро окисляются, в оксидном слое возникает большое переходное сопротивление, увеличивая нагрев деталей. Чрезмерная температура вызывает, в свою очередь, повышенное окисление и «нагар» контактов, которым потребуется чистка.

Для надежной работы важное значение имеют правильное позиционирование контактов и соответствующая сила начального и конечного давления. Это достигается регулировкой. По мере эксплуатации пружины могут ослабляться, поэтому необходимо периодически контролировать правильное положение контактов.

Когда аппарат отключается под нагрузкой, на рабочих контактах возникают искры и даже электрическая дуга. Для защиты смежных фаз от короткого замыкания применяются деионизационные камеры из огнеупорного изоляционного материала. Обычно это принадлежность мощных аппаратов.

В дополнение к основным контактам аппараты содержат вспомогательные, которые отличаются меньшим поперечным сечением, так как через них протекает небольшой управляющий ток. Однако за состоянием этих элементов также важно следить из-за их значимости в работе системы.

Многие думают, что величина коммутируемого тока и, соответственно, большие габариты – это то, чем отличается контактор от магнитного пускателя. Однако это не так. Современные контакторы могут быть и скромных размеров, рассчитанными на небольшие токи.

Магнитный пускатель

Магнитный пускатель представляет собой контактор или два (в реверсном варианте), наиболее часто используемых для запуска и остановки асинхронных двигателей.

Устройство часто оборудовано еще тепловым реле, защищающим цепь от перегрузок, дополнительными контактами, находящимися первоначально в замкнутом или разомкнутом состоянии. Эти отличающие особенности характеризуют магнитный пускатель, хотя контактор – основа его конструкции.

Термореле соединяется с силовыми контактами аппарата. Его внутреннее устройство состоит из биметаллических пластин, которые под действием тока греются. Их температурный изгиб вызывает размыкание контактов реле в цепи управления катушкой. Обесточенная катушка разрывает силовую цепь электромотора.

В отличие от контактора, магнитный пускатель может осуществлять реверс электромотора, то есть запускать его в прямом и обратном направлении. Для этого собирается аппарат из двух контакторов и поста с кнопками управления.

Важно! В схеме обязательно предусматривается наличие блокировок, чтобы не допустить одновременного замыкания обеих групп силовых контактов.

Классификация аппаратов

В основном, контакторы и магнитные пускатели, согласно российским стандартам, подразделяются в зависимости от коммутируемых нагрузочных токов. Аппараты сгруппированы в 7 классов, расположенных по возрастанию: от 6,3 А до 160 А.

Производятся устройства, отличающиеся по конструкции:

  1. Открытого типа. Монтаж таких аппаратов возможен только в пылезащищенных и влагозащищенных местах, например, в специальных шкафах;

  1. Закрытого типа. Могут монтироваться в производственных помещениях вне шкафов, но при этом там должны исключаться проникновение влаги и сильная запыленность;
  2. Защищенного типа. Это аппараты с практически герметичным корпусом. Допускаются к установке в наружных условиях. Необходимо только исключить воздействие прямого солнечного света и дождя.

Есть различия трехфазных приборов по питающему току катушки электромагнита. У одних пускателей катушка включается на фазное напряжение 220 В, у других – на линейное 380 В.

Эксплуатация контакторов и магнитных пускателей

Для того чтобы аппараты служили долго и безотказно, необходимо проводить регулярно в условиях эксплуатации следующие мероприятия:

  1. Визуальный осмотр. При нем выявляются явные повреждения и деформации кожуха. Сняв крышку, можно осмотреть состояние внутренних частей. В рабочем состоянии проверяется, нет ли вибраций и постороннего шума. Если контактор гудит при работе, проверяется плотность прилегания якоря и надежность механических соединений;
  2. Контролирование хода якоря. Нажатием вручную можно проверить плавность его перемещения, отсутствие помех, четкость работы пружины;
  3. Проверка и чистка контактов. Если на контактах отсутствует «нагар», то чистка не нужна из-за возможности разрушения тонкого покрытия. Контакты должны быть выровнены и одновременно соприкасаться всеми полюсами как можно большей частью поверхности. В противном случае производится регулировка;
  4. Оцените статью: