История изобретения интегральной схемы. Интегральные схемы: типы и описания

Варады Г.К. 404 взвод.

Интегральные схемы.

План:

1) Вступление (понятие, устройство).

2) Типы ИС.

3) Плюсы и минусы ИС.

4) Производство.

5) Применение.

Вступление.

(от лат. integratio - «соединение»).

ИС - это микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или "чипе") полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,3 х 1,3 мм до 13 х13 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС).

Классификация.

В зависимости от степени интеграции (количество элементов для цифровых схем) применяются следующие названия интегральных схем:

    малая интегральная схема (МИС) - до 100 элементов в кристалле,

    средняя интегральная схема (СИС) - до 1000 элементов в кристалле,

    большая интегральная схема (БИС) - до 10 тыс. элементов в кристалле,

    сверхбольшая интегральная схема (СБИС) - более 10 тыс. элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) - от 1-10 млн до 1 млрд элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) - более 1 млрд. элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Плюсы и минусы ИС.

Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками -аналоговыми схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения. Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Их основными плюсами считаются :

    Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» - что соответствует сигналу высокого уровня (1), либо «закрыт» - (0), в первом случае на транзисторе нет падения напряжения, во втором - через него не идёт ток . В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (активном) состоянии.

    Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка состояния возможна при таком уровне помех, когда высокий уровень интерпретируется как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов, позволяющих исправлять ошибки.

    Большая разница уровней состояний сигналов высокого и низкого уровня (логических «0» и «1») и достаточно широкий диапазон их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора компонентов и настройки элементами регулировки в цифровых устройствах.

Надежность. Надежность интегральной схемы примерно такая же, как у отдельного кремниевого транзистора, эквивалентного по форме и размеру. Теоретически транзисторы могут безотказно служить тысячи лет - один из важнейших факторов для таких областей применения, как ракетная и космическая техника, где единственный отказ может означать полный провал осуществляемого проекта.

Производство.

Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему. Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м2. На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера. кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).

Применение. Локальное\ Глобальное.

Локальное.

Непосредственно в схемотехнике, интегральная схема может взять на себя огромное количество задач. Среди них могут быть:

Логические элементы, Триггеры, Счётчики, Регистры, Буферные, преобразователи, Шифраторы, Дешифраторы, Цифровой компаратор, Мультиплексоры, Демультиплексоры, Сумматоры, Полусумматоры, Ключи, Микроконтроллеры, (Микро)процессоры (в том числе ЦП для компьютеров), Однокристалльные микрокомпьютеры, Микросхемы и модули памяти, ПЛИС (программируемые логические интегральные схемы).

Глобальное.

Микропроцессоры и миникомпьютеры. Впервые представленные публично в 1971 микропроцессоры выполняли большинство основных функций компьютера на единственной кремниевой ИС, реализованной на кристалле размером 5х5 мм. Благодаря интегральным схемам стало возможным создание миникомпьютеров - малых ЭВМ, где все функции выполняются на одной или нескольких больших интегральных схемах. Такая впечатляющая миниатюризация привела к резкому снижению стоимости вычислений. Выпускаемые в настоящее время мини-ЭВМ ценой менее 1000 долл. по своей производительности не уступают первым очень большим вычислительным машинам, стоимость которых в начале 1960-х годов доходила до 20 млн. долл. Микропроцессоры находят применение в оборудовании для связи, карманных калькуляторах, наручных часах, селекторах телевизионных каналов, электронных играх, автоматизированном кухонном и банковском оборудовании, средствах автоматического регулирования подачи топлива и нейтрализации отработавших газов в легковых автомобилях, а также во многих других устройствах. Большая часть мировой электронной индустрии, оборот которой превышает 795млрд рублей., так или иначе зависит от интегральных схем. В масштабах всего мира интегральные схемы находят применение в оборудовании, суммарная стоимость которого составляет многие сотни миллиардов рублей.

Литература.

Мейзда Ф. Интегральные схемы: технология и применения. М., 1981 Зи С. Физика полупроводниковыхприборов. М., 1984 Технология СБИС. М., 1986 Маллер Р., Кеймин С. Элементы интегральных схем. М.,1989 Шур М.С. Физика полупроводниковых приборов. М., 1992

Интегральная микросхема (или просто интегральная схема) есть совокупность, как правило, большого количества взаимосвязанных компонентов (транзисторов, диодов, конденсаторов, резисторов и т.п.), изготовленная в едином технологическом цикле (т.е. одновременно), на одной и той же несущей конструкции - подложке - и выполняющая определенную функцию преобразования информации.

Термин «интегральная схема» (ИС) отражает факт объединения (интеграции) отдельных деталей - компонентов - в конструктивно единый прибор, а также факт усложнения выполняемых этим прибором функций по сравнению с функциями отдельных компонентов.

Компоненты, которые входят в состав ИС и тем самым не могут быть выделены из нее в качестве самостоятельных изделий, называются элементами ИС или интегральными элементами. Они обладают некоторыми особенностями по сравнению с транзисторами и т.д., которые изготавливаются в виде конструктивно обособленных единиц и соединяются в схему путем пайки.

В основе развития электроники лежит непрерывное усложнение функций, выполняемых электронной аппаратурой. На определенных этапах становится невозможным решать новые задачи старыми средствами или, как говорят, на основе старой элементной базы, например с помощью электронных ламп или дискретных транзисторов. Основными факторами, лежащими в основе смены элементной базы, являются: надежность, габариты и масса, стоимость и мощность.

Особенностью изделий микроэлектроники является высокая степень сложности выполняемых функций, для чего создаются схемы, в которых количество компонентов исчисляется миллионами. Отсюда ясно, что обеспечить надежность функционирования при соединении компонентов вручную - задача невыполнимая. Единственным способом ее решения является применение качественно новых высоких технологий.

Для изготовления интегральных схем используется групповой метод производства и планарная технология.

Групповой метод производства заключается в том, что, во-первых, на одной пластине полупроводникового материала одновременно изготавливается большое количество интегральных схем; во-вторых, если позволяет технологический процесс, то одновременно обрабатываются десятки таких пластин. После завершения цикла изготовления ИС пластина разрезается в двух взаимно-перпендикулярных направлениях на отдельные кристаллы, каждый из которых представляет собой ИС.

Планарная технология - это такая организация технологического процесса, когда все элементы и их составляющие создаются в интегральной схеме путем их формирования через плоскость.

Одна или несколько технологических операций при изготовлении ИС заключается в соединении отдельных элементов в схему и присоединении их к специальным контактным площадкам. Поэтому необходимо, чтобы выводы всех элементов и контактные площадки находились в одной плоскости. Такую возможность обеспечивает планарная технология.



Финальная операция - корпусирование - это помещение ИС в корпус с присоединением контактных площадок к ножкам ИС (рис. 2.20).


Стоимость D одной ИС (одного кристалла) упрощенно можно вычислить следующим образом:

где А - затраты на научно-исследовательские и опытно-кон­струк­торские работы по созданию ИС; В - затраты на технологическое оборудование, помещение и др.; С - текущие расходы на материалы, электроэнергию, заработную плату, в пересчете на одну пластину; Z - количество пластин, изготовляемых до амортизации основных производственных фондов; X - количество кристаллов на пластине; Y - отношение годных ИС к количеству, запущенному в производство в начале его.

Кроме очевидных комментариев относительно затрат, нужно отметить следующее. Увеличение Y достигается созданием все более современной технологии, пожалуй, наиболее сложной и чистой среди многих новейших производств. Роста числа кристаллов X на пластине можно достичь двумя путями: увеличением размера пластины и уменьшением размеров отдельных элементов. Эти оба направления используются разработчиками.

В заключение заметим, что все константы, входящие в формулу, не являются ни постоянными, ни зависимыми друг от друга, поэтому анализ на минимум стоимости на самом деле является сложным и многофакторным.

Классификация ИС. Классификация ИС может производиться по различным признакам, ограничимся здесь лишь одним. По способу изготовления и получаемой при этом структуре различают два принципиально разных типа интегральных схем: полупроводниковые и пленочные.

Полупроводниковая ИС - это микросхема, элементы которой выполнены в приповерхностном слое полупроводниковой подложки (рис. 2.21). Эти ИС составляют основу современной микроэлектроники.

Пленочная ИС - это микросхема, элементы которой выполнены в виде разного рода пленок, нанесенных на поверхность диэлектрической подложки (рис. 2.22). В зависимости от способа нанесения пленок и связанной с этим их толщиной различают тонкопленочные ИС (толщи­на пленок до 1-2 мкм) и толстопленочные ИС (толщина пленок от 10-20 мкм и выше). Поскольку до сих пор никакая комбинация напыленных пленок не позволяет получить активные эле­менты типа транзисторов, пленочные ИС содержат только пассивные элементы (резисторы, конденсаторы и т.п.). Поэтому функции, выполняемые чисто пленочными ИС, крайне ограничены. Чтобы преодолеть эти ограничения, пленочную ИС дополняют активными компонентами (отдельными транзисторами или ИС), располагая их на той же подложке и соединяя с пленочными элементами. Тогда получается ИС, которую называют гибридной.

Гибридная ИС (или ГИС) - это микросхема, которая представляет собой комбинацию пленочных пассивных элементов и активных компонентов, расположенных на общей диэлектрической подложке. Дискретные компоненты, входящие в состав гибридной ИС, называют навесными, подчеркивая этим их обособленность от основного технологического цикла получения пленочной части схемы.

Еще один тип «смешанных» ИС, в которых сочетаются полупроводниковые и пленочные интегральные элементы, называют совмещенными.

Совмещенная ИС - это микросхема, у которой активные элементы выполнены в приповерхностном слое полупроводникового кристалла (как у полупроводниковой ИС), а пассивные нанесены в виде пленок на предварительно изолированную поверхность того же кристалла (как у пленочной ИС).

Совмещенные ИС выгодны тогда, когда необходимы высокие номиналы и высокая стабильность сопротивлений и емкостей; эти требования легче обеспечить с помощью пленочных элементов, чем с помощью полупроводниковых.

Во всех типах ИС межсоединения элементов осуществляются с помощью тонких металлических полосок, напыленных или нанесенных на поверхность подложки и в нужных местах контактирующих с соединяемыми элементами. Процесс нанесения этих соединительных полосок называют металлизацией, а сам «рисунок» межсоединений - металлической разводкой.

Полупроводни ковые ИС . В настоящее время различают следующие полупроводниковые ИС: биполярные, МОП (металл-окисел-полупроводник) и БИМОП. Последние представляют собой сочетание первых двух, и в них комбинируются положительные их качества.

Технология полупроводниковых ИС основана на легировании полупроводниковой (кремниевой) пластины поочередно донорными и акцепторными примесями, в результате чего под поверхностью образуются тонкие слои с разным типом проводимости р-n -переходы на границах слоев. Отдельные слои используются в качестве резисторов, а р-n -переходы - в диодных и транзисторных структурах.

Легирование пластины приходится осуществлять локально, т.е. на отдельных участках, разделенных достаточно большими расстояниями. Локальное легирование осуществляется с помощью специальных масок с отверстиями, через которые атомы примеси проникают в пластину на нужных участках. При изготовлении полупроводниковых ИС роль маски обычно играет пленка двуокиси кремния SiO 2 , покрывающая поверхность кремниевой пластины. В этой пленке специальными методами гравируется необходимая совокупность отверстий различной формы или, как говорят, необходимый рисунок (рис. 2.22 ). Отверстия в масках, в частности в окисной пленке, называют окнами.

Теперь кратко охарактеризуем составные части (элементы) полупроводниковых ИС. Основным элементом биполярных ИС является n-p-n -транзистор: на его изготовление ориентируется весь технологический цикл. Все другие элементы должны изготавливаться, по возможности, одновременно с этим транзистором, без дополнительных технологических операций.

Основным элементом МДП ИС является МДП-транзистор. Изготовление других элементов также подстраивается под базовый транзистор.

Элементы биполярной ИС необходимо тем или иным способом изолировать друг от друга с тем, чтобы они не взаимодействовали через кристалл.

Элементы МОП ИС не нуждаются в специальной изоляции друг от друга, так как взаимодействие между смежными МОП-транзисторами не имеет места. В этом - одно из главных преимуществ МОП ИС по сравнению с биполярными.

Характерная особенность полупроводниковых ИС состоит в том, что среди их элементов отсутствуют катушки индуктивности и, тем более, трансформаторы. Это объясняется тем, что до сих пор не удалось использовать в твердом теле какое-либо физическое явление, эквивалентное электромагнитной индукции. Поэтому при разработке ИС стараются реализовать необходимую функцию без использования индуктивностей, что в большинстве случаев удается. Если же катушка индуктивности или трансформатор принципиально необходимы, их приходится использовать в виде навесных компонентов.

Размеры кристаллов у современных полупроводниковых ИС достигают 20х20 мм 2 . Чем больше площадь кристалла, тем более сложную, более многоэлементную ИС можно на нем разместить. При одной и той же площади кристалла можно увеличить количество элементов, уменьшая их размеры и расстояния между ними.

Функциональную сложность ИС принято характеризовать степенью интеграции, т.е. количеством элементов (чаще всего транзисторов) на кристалле. Максимальная степень интеграции составляет 10 б элементов на кристалле. Повышение степени интеграции (а вместе с нею и сложности функций, выполняемых ИС) - одна из главных тенденций в микроэлектронике.

Для количественной оценки степени интеграции используют условный коэффициент k = lgN. В зависимости от его значения инте­ральные схемы называются по-разному:

k ≤ 2 (N ≤ 100) - интегральная схема (ИС);

2 ≤ k ≤ 3 (N ≤ 1000) - интегральная схема средней степени интеграции (СИС);

3 ≤ k ≤ 5 (N ≤ 10 5) - большая интегральная схема (БИС);
k > 5 (N>10 5) - сверхбольшая интегральная схема (СБИС).

Ниже приведены английские обозначения и их расшифровки:

IС - Integrated Circuit;

MSI - Medium Scale Integration;

LSI - Large Scale Integration;

VLSI - Very Large Scale Integration.

Кроме степени интеграции, используют еще такой показатель, как плотность упаковки - количество элементов (чаще всего транзисторов) на единицу площади кристалла. Этот показатель, который характеризует главным образом уровень технологии, в настоящее время составляет до 500-1000 элементов/мм 2 .

Гибридные ИС. Пленочные, а значит, и гибридные ИС в зависимости от технологии изготовления делятся на толсто- и тонкопленочные.

Толстопленочные ГИС (обозначим их ТсГИС) изготавливаются весьма просто. На диэлектрическую пластинку-подложку наносят пасты разного состава. Проводящие пасты обеспечивают межсоединения элементов, обкладки конденсаторов и выводы к штырькам корпуса; резистивные - получение резисторов; диэлектрические - изоляцию между обкладками конденсаторов и общую защиту поверхности готовой ГИС. Каждый слой должен иметь свою конфигурацию, свой рисунок. Поэтому при изготовлении каждого слоя пасту наносят через свою маску - трафарет - с окнами в тех местах, куда должна попасть паста данного слоя. После этого приклеивают навесные компоненты и соединяют их выводы с контактными площадками.

Тонкопленочные ГИС (обозначим их ТкГИС) изготавливаются по более сложной технологии, чем ТсГИС. Классическая тонкопленочная технология характерна тем, что пленки осаждаются на подложку из газовой фазы. Вырастив очередную пленку, меняют химический состав газа и тем самым электрофизические свойства следующей пленки. Таким образом, поочередно получают проводящие, резистивные и диэлектрические слои. Конфигурация (рисунок) каждого слоя определяется либо трафаретом, как в случае ТсГИС, либо маской, подобно окисной маске в полупроводниковых ИС (см. рис. 1.4).

Навесные элементы в ТкГИС, как и в ТсГИС, приклеивают на поверхность готовой пленочной части схемы и соединяют с соответствующими контактными площадками элементов.

Степень интеграции ГИС не может оцениваться так же, как в случае полупроводниковых ИС. Тем не менее, существует термин большая ГИС (или БГИС), который означает, что в состав ГИС в качестве навесных компонентов входят не отдельные транзисторы, а целые полупроводниковые ИС.

Статьи, партнеры Разное

История изобретения интегральной схемы

Первая логическая схема на кристаллах кремния была изобретена 52 года назад и содержала только один транзистор. Один из основателей компании Fairchild Semiconductor Роберт Нойс в 1959 году изобрел устройство, которое затем стало называться интегральной схемой, микросхемой или микрочипом. А почти на полгода раньше похожее устройство придумал инженер из компании Texas Instruments Джэк Килби. Можно сказать, что эти люди стали изобретателями микросхемы.

Интегральной микросхемой называется система из конструктивно связанных элементов, соединенных между собой электрическими проводниками. Также под интегральной схемой понимают кристалл с электронной схемой. Если интегральная схема заключена в корпус, то это уже микросхема.

Первая действующая интегральная микросхема была представлена Килби 12 сентября 1958. В ней использовалась разработанная им концепция, базирующаяся на принципе изоляции компонентов схемы p-n-переходами, изобретенном Куртом Леховеком.

Внешний вид новинки был немного страшноват, но Килби и не предполагал, что показанное им устройство положит начало всем информационным технологиям, иначе, по его словам, он сделал бы этот прототип покрасивее.

Но в тот момент важна была не красота, а практичность. Все элементы электронной схемы – резисторы, транзисторы, конденсаторы и остальные, - были размещены на отдельных платах. Так было до тех пор, пока не возникла мысль сделать всю схему на одном монолитном кристалле полупроводникового материала.

Самая первая интегральная микросхема Килби представляла собой маленькую германиевую полоску 11х1,5 мм с одним транзистором, несколькими резисторами и конденсатором. Несмотря на свою примитивность, эта схема выполнила свою задачу – вывела синусоиду на экран осциллографа.

Шестого февраля 1959 года Джэк Килби подал заявку на регистрацию патента на новое устройство, описанное им как объект из полупроводникового материала с полностью интегрированными компонентами электронной схемы. Его вклад в изобретение микросхемы был отмечен вручением ему в 2000 году Нобелевской премии в области физики.

Идея Роберта Нойса смогла решить несколько практических проблем, не поддавшихся интеллекту Килби. Он предложил использовать для микросхем кремний, а не германий, предложенный Джэком Килби.

Патенты были получены изобретателями в одном и том же 1959 году. Начавшееся между TI и Fairchild Semiconductor соперничество завершилось мирным договором. На взаимовыгодных условиях они создали лицензию на изготовление чипов. Но в качестве материала для микросхем выбрали все же кремний.

Производство интегральных схем было запущено на Fairchild Semiconductor в 1961 году. Они сразу заняли свою нишу в электронной промышленности. Благодаря их применению в создании калькуляторов и компьютеров в качестве отдельных транзисторов, дало возможность сделать вычислительные устройства более компактными, повысив при этом их производительность, значительно упростив ремонт компьютеров .

Можно сказать, что с этого момента началась эпоха миниатюризации, продолжающаяся по сей день. При этом абсолютно точно соблюдается закон, который сформулировал коллега Нойса Гордон Мур. Он предсказал, что число транзисторов в интегральных схемах каждые 2 года будет удваиваться.

Покинув Fairchild Semiconductor в 1968 году, Мур и Нойс создали новую компанию – Intel. Но это уже совсем другая история...

Введение

В настоящее время главными задачами при создании радиоэлектронной аппаратуры (РЭА) и электронно-вычислительных машин (ЭВМ) является увеличение скорости работы и уменьшение физических размеров. Для этого улучшаются характеристики и параметры элементов и интегральных микросхем, также происходит их оптимизация. Однако, при переходе работы устройств в наносекундный диапазон возникают новые проблемы, связанные с искажением сигналов в линиях связи. С повышением быстродействия логических схем скорость преобразования информации приближается к скорости её передачи, а при задержках логических элементов становится сравнимой с ней. В этом случае улучшение динамических характеристик самих элементов может не дать желаемого эффекта. Так как интегральные схемы как правильно, являются компонентами печатных плат, то необходим комплексный подход к проектированию печатных плат.

Следовательно при проектировании печатных узлов необходимо это учитывать, и искать методы которые позволяют существенно повысить помехоустойчивость аппаратуры. Также необходимо учитывать проблемы питания. целостность сигнал интегральный конденсатор

В данной работе мы проведем исследование, и покажем что при правильной разработке печатных плат мы можем значительно сократить возникающее помехи при передачи информации.

Интегральные схемы

История развития интегральных схем

Интегральная схема - электронная микросхема изготовленная на полупроводниковой подложке (пластине или плёнке) и помещённая в неразборный корпус, или без такового, в случае вхождения в состав микросборки. Большая часть микросхем изготавливается в корпусах для поверхностного монтажа.

Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой -- ИС, заключённую в корпус.

История появления интегральных схем берет своё начало со второй половины двадцатого века. Их возникновение было обусловлено острой необходимостью повышения надёжности аппаратуры и автоматизации процессов изготовления и сборки электронных схем.

Другой причиной создания ИС стала технологическая возможность размещения и соединения между собой множества электронных компонентов - диодов, транзисторов и так далее, на одной пластине полупроводника. Дело в том, что созданные к тому времени меза- и планарные транзисторы и диоды изготавливались по технологии групповой обработки на одной пластине-заготовке одновременно.

Концепция ИС была предложена задолго до появления групповых методов изготовления полупроводниковых приборов. Первые в мире ИС были разработаны и созданы в 1959 году американцами Джеком Сент Клером Килби (фирма Texas Instruments) и Робертом Н. Нойсом (Fairchild Semiconductor) независимо друг от друга.

В мае 1958 г. Джек Килби перешёл в фирму Texas Instruments из фирмы Centralab - в ней он возглавлял программу по разработке слуховых аппаратов, для которых фирма создала небольшое предприятие по созданию германиевых транзисторов. Уже в июле 1958 г. Килби пришла в голову идея создания ИС. Из полупроводниковых материалов уже умели изготовлять резисторы, конденсаторы и транзисторы. Резисторы изготовляли, используя омические свойства "тела" полупроводника, а для создания конденсаторов использовались смещённые в обратном направлении p-n -переходы. Оставалось только научиться создавать такие переходы в монолите кремния.

Многие недостатки "твёрдых схем" были устранены позднее Робертом Нойсом. С января 1959 года, занимаясь в фирме Fairchild Semiconductor (FS) исследованием возможностей планарного транзистора, он вплотную занялся выдвинутой им идеей создания интегральных диффузионных или напылённых резисторов методом изоляции приборов с помощью смещённых в обратном направлении р-n -переходов и соединения элементов через отверстия в окисле путём напыления металла на поверхность. Вскоре была подана соответствующая заявка на патент, и разработчики элементов в тесном контакте со специалистами по фотолитографии начали работать над вопросами соединения диффузионных резисторов и транзисторов на кремниевых пластинах.

Разработки ИС стали продвигаться лихорадочными темпами. Фирма FS пригласила в качестве разработчика схем Роберта Нормана из фирмы Sperry. Норман был знаком с резисторно-транзисторной логикой, выбранной в качестве основы для будущей серии ИС - Micrologic... Это было начало новой эры.

Степень интеграции

В зависимости от степени интеграции применяются следующие названия интегральных схем:

  • · малая интегральная схема (МИС) -- до 100 элементов в кристалле,
  • · средняя интегральная схема (СИС) -- до 1000 элементов в кристалле,
  • · большая интегральная схема (БИС) -- до 10 тыс. элементов в кристалле,
  • · сверхбольшая интегральная схема (СБИС) -- более 10 тыс. элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) -- от 1-10 млн до 1 млрд элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) -- более 1 млрд. элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Классификация интегральных схем

По конструктивно-технологическому исполнению различают полу-проводниковые, пленочные и гибридные ИС.

К полупроводниковым относят ПМС (полупроводниковые интег-ральные микросхемы), все элементы и межэлементные,соединения которой выполнены в объеме или на поверхности полупроводника. В зависимости от способов изоляции отдельных элементов различают ПМС с изоляцией p-n-переходами и микросхемы с диэлектрической (оксидной) изоляцией. ПМС можно изготовить и на подложке из ди-электрического материала на основе как биполярных, так и поле-вых транзисторов. Обычно в этих схемах транзисторы выполнены в виде трехслойных структур с двумя р-n-переходами (n-p-n-типа), а диоды — в виде двухслойных структур с одним р-л-переходом. Иног-да вместо диодов используют транзисторы в диодном включении. Резисторы ПМС, представленные участками легированного полу-проводника с двумя выводами, имеют сопротивление несколько ки-лоомов. В качестве высокоомных резисторов иногда используют об-ратное сопротивление р-n-перехода или входные сопротивления эмнт-терных повторителей. Роль конденсаторов в ПМС выполняют обратно смещенные p-rt-переходы. Емкость таких конденсаторов составляет 50 — 200 пФ. Дроссели в ПМС создавать трудно, поэтому большинство устройств проектируют без индуктивных элементов. Все элементы ПМС полу-чают в едином технологическом цикле в кристалле полупроводника. Соединения элементов таких схем осуществляются с помощью алю-миниевых или золотых пленок, получаемых методом вакуумного на-пыления. Соединение схемы с внешними выводами производят алю-миниевыми или золотыми проводниками диаметром около 10 мкм, которые методом термокомпрессии присоединяют к пленкам, а за-тем приваривают к внешним выводам микросхемы. Полупроводниковые микросхемы могут рассеивать мощность 50 — 100 мВт, работать на частотах до 20 — 100 МГц, обеспечивать время задержки до 5 не. Плотность монтажа электронных устройств на ПМС — до 500 элементов на 1 см3. Современный групповой технологический цикл позволяет обра-батывать одновременно десятки полупроводниковых пластин, каж-дая из которых содержит сотни ПМС с сотнями элементов в кристал-ле, связанных в заданные электронные цепи. При такой технологии обеспечивается высокая идентичность электрических характеристик микросхем.

Пленочными интегральными (или просто пленочными схемами ПС) называют ИС, все элементы и межэлементные соединения кото-рой выполнены только в виде пленок. Интегральные схемы подраз-деляют, на тонко- и толстопленочные. Эти схемы могут иметь коли-чественное и качественное различие. К тонкопленочным условно от-носят ИС с толщиной пленок до 1 мкм, а к толстопленочным — ИС с толщиной пленок выше 1 мкм. Качественное различие определяется технологией изготовления пленок. Элементы тонкопленочной ИС наносят на подложку с помощью термовакуумного осаждения и катод-ного распыления. Элементы толстопленочных ИС изготовляют преи-мущественно методом шелкографии с последующим вжиганием.

Гибридные интегральные микросхемы (ГИС) представляют со-бой сочетание навесных активных радиоэлементов (микротранзисто-ров, диодов) и пленочных пассивных элементов и их соединений. Обычно ГИС содержат: изоляционные основания из стекла или. ке-, рамики, на поверхности которых сформированы пленочные проводни-ки, резисторы, конденсаторы небольшой емкости; навесные бескор-пусные активные элементы (диоды, транзисторы); навесные пассив-ные элементы в миниатюрном исполнении (дроссели, трансформато-ры, конденсаторы большой емкости), которые не могут быть выпол-нены в виде пленок. Такую изготовленную ГИС герметизируют в пластмассовом или металлическом корпусе. Резисторы сопротивлением от тысячных долей ома до десятков килоомов в ГИС изготовляют в виде тонкой пленки нихрома или тантала. Пленки наносят на изоляционную основу (подложку) и под-вергают термическому отжигу. Для получения резисторов с сопро-тивлением в десятки мегаомов используют металлодиэлектрическив смеси (хрома, монооксида кремния и др.). Средние размеры пленоч-ных резисторов-(1 — 2)Х10~3 см2. Конденсаторы в ГИС выполняют из тонких пленок меди, сереб-ра, алюминия или золота. Напыление этих металлов производят с подслоем хрома, титана, молибдена, обеспечивая хорошую адгезию с изоляционным материалом подложки. В качестве диэлектрика в конденсаторах используют пленку из оксида кремния, бериллия, двуоксида титана и т. д. Пленочные конденсаторы изготовляют ем-костью от десятых долей пикофарады до десятков тысяч пикофарад размером от 10~3 до 1 см2. Проводники ГИС, с помощью которых осуществляют межэле-ментные соединения -и подключение к выводным зажимам, выпол-няют в виде тонкой пленки золота, меди или алюминия с подслоем никеля, хрома, титана, обеспечивающем высокую адгезию к изоля-ционному основанию. Гибридные интегральные схемы, у которых толщина пленок, образующихся при изготовлении пассивных эле-ментов, до 1 мкм с шириной 100 — 200 мкм,-относят к тонкопленоч-ным. Такие пленки получают методом термического напыления на поверхности подложек в вакууме с использованием трафаретов, ма-сок. Гибридные интегральные схемы с толщиной 1 мкм и более от-носят к толстопленочным и изготовляют путем напыления на подложки токопроводящих или диэлектрических паст через сетчатые трафареты с последующим их вжиганием в подложки при высокой температуре. Эти схемы имеют большие размеры и массу пассивных элементов. Навесные активные элементы состоят из гибких или жест-ких «шариковых» выводов, которые пайкой или сваркой присоединя-, ют к пленочной микросхеме.

Плотность пассивных и активных элементов при их многослой-ном расположении в ГИС, выполненной по тонкопленочной техноло-гии, достигает 300 — 500 элементов на 1 см3, а плотность монтажа электронных устройств на ГИС — 60 — 100 элементов на 1 см3. При такой плотности монтажа объем устройства, содержащего-107 эле-ментов, составляет 0,1 — 0,5 м3, а время безотказной работы — 103 — 104 ч. -

Основным преимуществом ГИС является возможность частичной интеграции элементов, выполненных по различной технологии (бипо-лярной, тонко- и толстопленочной и др.) с широким диапазоном электрических параметров (маломощные, мощные, активные, пассив-ные, быстродействующие и др.).

В настоящее время перспективна гибридизация различных типов интегральных схем. При малых геометрических размерах пленочных элементов и большой площади пассивных подложек на их поверхно-сти можно разместить десятки — сотни ИС и других компонентов. Та-ким путем создают многокристальные гибридные ИС с большим чис-лом (несколько тысяч) диодов, транзисторов в неделимом элементе. В комбинированных микросхемах можно разместить функциональ-ные узлы, обладающие различными электрическими характеристи-ками.

Сравнение ПМС и ГИС. Полупроводниковые микросхемы со сте-пенью интеграции до тысяч и более элементов в одном кристалле получили преимущественное. распространение. Объем производства ПМС на порядок превышает объем выпуска ГИС. В некоторых уст-ройствах целесообразно применять ГИС по ряду причин.

Технология ГИС сравнительно проста и требует меньших перво-начальных затрат на оборудование, чем полупроводниковая техно-логия, что упрощает создание нетиповых, нестандартных изделий и аппаратуры.

Пассивная часть ГИС изготовляется на отдельной подложке, что позволяет получать пассивные элементы высокого качества и создавать высокочастотные ИС.

Технология ГИС дает возможность заменять существующие ме-тоды многослойного печатного монтажа при размещении на подлож-ках бескорпусных ИС и БИС и других полупроводниковых компо-нентов. Технология ГИС предпочтительна для выполнения силовых ИС на большие мощности. Предпочтительно также гибридное испол-нение интегральных схем линейных устройств, обеспечивающих про-порциональную зависимость между входными и выходными сигна-лами. В этих устройствах сигналы изменяются в широком интерва-ле частот и мощностей, поэтому их ИС должны обладать широким диапазоном номиналов, не совместимых в едином процессе изготов-ления пассивных и активных элементов. Большие интегральные схе-мы БИС допускают объединение различных функциональных узлов, в связи с чем они получили широкое распространение в линейных устройствах.

Преимущества и недостатки интегральных схем.

  • Преимуществом ИС являются высокая надежность, малые размеры и масса. Плот-ность активных элементов в БИС достигает 103 — 104 на 1 см3. При установке микросхем в печатные платы и соединении их в блоки плотность элементов составляет 100 — 500 на 1 см3, что в 10 — 50 раз выше, чем при использовании отдельных транзисторов, диодов, ре-зисторов в микромодульных устройствах.
  • Интегральные схемы безынерционны в работе. Благодаря не-большим, размерам в микросхемах снижаются междуэлектродные емкости и индуктивности соединительных проводов, что позволяет использовать их на сверхвысоких частотах (до 3 ГГц) и в логичес-ких схемах с малым временем задержки (до 0,1 не).
  • Микросхемы экономичны (от 10 до 200 мВт) и уменьшают рас-ход электроэнергии и массу источников питания.

Основным недостатком ИС является малая выходная мощность (50 — 100 мВт).

В зависимости от функционального назначения ИС делят на две основные категории — аналоговые (или линейно-импульсные) и цифровые (или логические).

Аналоговые интегральные схемы АИС используются в радио-технических устройствах и служат для генерирования и линейного усиления сигналов, изменяющихся по закону непрерывной функции в широком диапазоне мощностей и частот. Вследствие этого анало-говые ИМС должны содержать различные по номиналам пассивные и по параметрам активные элементы, что усложняет их разработку. Гибридные микросхемы уменьшают трудности изготовления аналого-вых устройств в микроминиатюрном исполнении. Интегральные мик-росхемы становятся основной элементной базой для радиоэлектрон-ной аппаратуры.

Цифровые интегральные схемы ЦИС применяются в ЭВМ, уст-ройствах дискретной обработки информации и автоматики. С по-мощью ЦИС преобразуются и обрабатываются цифровые коды. Ва-риантом этих схем являются логические микросхемы, выполняющие операции над двоичными кодами в большинстве современных ЭВМ и цифровых устройств.

Аналоговые и цифровые ИС выпускаются сериями. В серию входят ИС, которые могут выполнять различные функции, но имеют единое конструктивно-технологическое исполнение и предназначают-ся для совместного применения. Каждая серия содержит несколько различающихся типов, которые могут делиться на типономиналы, имеющие конкретное функциональное назначение и условное обозна-чение. Совокупность типономиналов образует тип ИС.